Elevational shifts in reproductive ecology indicate the climate response of a model chasmophyte, Rainer's bellflower (Campanula raineri).

Ann Bot

Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DiSAA), University of Milan, via G. Celoria 2, 20133, Milan, Italy.

Published: September 2024

AI Article Synopsis

  • Scientists studied how a mountain plant called Campanula raineri responds to different climates at different heights.
  • They found that higher elevations led to better pollen and seed quality, and that the main pollinators changed at different heights.
  • This research helps understand how such plants survive and reproduce in changing environments.

Article Abstract

Background And Aims: Elevation gradients provide 'natural experiments' for investigating plant climate change responses, advantageous for the study of protected species and life forms for which transplantation experiments are illegal or unfeasible, such as chasmophytes with perennial rhizomes pervading rock fissures. Elevational climatic differences impact mountain plant reproductive traits (pollen and seed quality, sexual vs. vegetative investment) and pollinator community composition; we investigated the reproductive ecology of a model chasmophyte, Campanula raineri Perp. (Campanulaceae), throughout its current elevational/climatic range to understand where sub-optimal conditions jeopardise survival. We hypothesised that: 1) reproductive fitness measures are positively correlated with elevation, indicative of the relationship between fitness and climate; 2) C. raineri, like other campanulas, is pollinated mainly by Hymenoptera; 3) potential pollinators shift with elevation.

Methods: We measured pollen and seed quality, seed production, the relative investment in sexual vs. vegetative structures and vegetative (Grime's CSR) strategies at different elevations. Potential pollinators were assessed by combining molecular and morphological identification.

Key Results: Whereas CSR strategies were not linked to elevation, pollen and seed quality were positively correlated, as was seed production per fruit (Hypothesis 1 is supported). The main pollinators of C. raineri were Apidae, Andrenidae, Halictidae (Hymenoptera) and Syrphidae (Diptera), probably complemented by a range of occasional pollinators and visitors (Hypothesis 2 partially supported). Potential pollinator communities showed a taxonomic shift towards Diptera with elevation (particularly Anthomyiidae and Muscidae) and away from Hymenoptera (Hypothesis 3 was supported).

Conclusions: Pollinator availability is maintained at all elevations by taxon replacement. However, reduced pollen quality and seed production at lower elevations suggest an impact of climate change on reproduction (especially <1200 m a.s.l., where seed germination was limited). Aside from guiding targeted conservation actions for C. raineri, our results highlight problems that may be common to mountain chasmophytes worldwide.

Download full-text PDF

Source
http://dx.doi.org/10.1093/aob/mcae164DOI Listing

Publication Analysis

Top Keywords

pollen seed
12
seed quality
12
seed production
12
reproductive ecology
8
model chasmophyte
8
campanula raineri
8
climate change
8
sexual vegetative
8
positively correlated
8
potential pollinators
8

Similar Publications

Overexpression of the general transcription factor OsTFIIB5 alters rice development and seed quality.

Plant Cell Rep

January 2025

Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India.

Overexpression of general transcription factor OsTFIIB5 in rice affects seedling growth, plant height, flowering time, panicle architecture, and seed protein/starch levels and involves modulation of expression of associated genes. TFIIB, a key general transcription factor (GTF), plays a critical role in pre-initiation complex (PIC) formation and facilitates RNA polymerase II-mediated transcription. In humans and yeast, TFIIB is encoded by a single gene; however, in plants it is encoded by a multigene family whose products may perform specialized transcriptional functions.

View Article and Find Full Text PDF
Article Synopsis
  • Cold stress during the booting stage of rice severely impacts yields, especially in colder regions, prompting a study on the Ctb1 gene for developing cold-tolerant rice varieties.
  • Researchers identified key genetic variations (InDels and SNPs) in the Ctb1 promoter, with a specific InDel at -1,302 bp significantly enhancing Ctb1 expression and cold tolerance.
  • The introduction of this beneficial InDel into a cold-sensitive rice variety led to substantial improvements in cold survival, seed setting rates, and overall yield, highlighting its importance for breeding resilient rice.
View Article and Find Full Text PDF

Successful pollination and fertilization are crucial for grain setting in cereals. Wheat is an allohexaploid autogamous species. Due to its evolutionary history, the genetic diversity of current bread wheat () cultivars is limited.

View Article and Find Full Text PDF

Maize ( L.) is a globally important crop, thriving across diverse environments. Breeding maize inbreds with good combining ability for stable yields under both optimal and stress-prone conditions has been successful.

View Article and Find Full Text PDF

Nanoparticles play a significant role in enhancing crop yield and reducing nutrient loss through precise nutrient delivery mechanisms. However, it is imperative to ascertain the specific plant physiology altered by these nanoparticles. This study investigates the effects of green-synthesized nanoparticles, specifically boron nitride and sulphur, on sunflower yield, seed quality, and physiological activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!