Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coastal salt marshes provide effective protection to the coastal environments they front against coastal erosion by reducing the incoming wave energy. Understanding sediment dynamic processes in coastal salt marshes environments is of crucial importance for coastal defense. The objective of this study is to assess the impact of Spartina alterniflora (S. alterniflora) marshes on wave attenuation, sediment transport, and morphodynamics through extensive field records on the Cixi tidal flat in Hangzhou Bay. Results demonstrate that wave attenuation by S. alterniflora marshes increases proportionally with the intensification of wind waves at a consistent water depth or significant wave height. Moreover, wave attenuation in the context of wind waves surpasses that of swells. On average, the wave attenuation provided by S. alterniflora marshes during both wind waves and swells is more than six times greater than that offered by the adjacent mudflat. Additionally, net sediment fluxes within S. alterniflora marshes decrease by 37 % in the presence of swells and 84 % with wind waves, in comparison to the mudflat. The influence of S. alterniflora marshes on tidal flat accretion is more pronounced with wind waves than swells. Notably, observed from summer to winter, the surface accretion of tidal flats is highest (∼26 cm) at the edge of S. alterniflora marshes. This study contributes valuable insights into the complex interactions between salt marshes and hydrodynamic forces, essential for informing coastal management strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.176562 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!