A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vulnerable periods for the mouse mammary gland: Comparison of the effects of ethinyl estradiol exposures during two early stages of development. | LitMetric

AI Article Synopsis

  • The study investigates how exposure to the estrogen receptor (ER) agonist 17α-ethinyl estradiol (EE2) influences mammary gland development in mice during pregnancy and juvenile periods.
  • Female mice were exposed to EE2 either during pregnancy and nursing, or only during the juvenile period, allowing researchers to assess the effects on both male and female offspring.
  • Results showed that exposure timing affected the morphology of the mammary gland and other hormone-sensitive traits, highlighting the importance of understanding environmental estrogen exposure, especially in early life.

Article Abstract

The mammary gland is responsive to endogenous hormones and environmental chemicals that are estrogen receptor (ER) agonists. The mouse mammary gland offers the opportunity to dissect the most sensitive windows of exposure. 17α-ethinyl estradiol (EE2) is a pharmaceutical ER agonist that often serves as a positive control for estrogen-active chemicals. Here, adult female mice were exposed to EE2 starting either at pregnancy day 7, or on lactational day 1, and exposures continued until the litters were weaned. The pups were therefore exposed during gestation + the juvenile period, or during the juvenile period alone. The morphology of the mammary gland was evaluated in both male and female offspring at two life stages: weaning (postnatal day [PND]21) and at puberty (PND32). Other hormone-sensitive outcomes evaluated included body weight, anogenital index, frequency of open vagina, and weight of the uterus. We found age- and sex-dependent effects of EE2 on these estrogen-responsive endpoints including the morphology of the mammary gland. Importantly, EE2 altered mammary gland morphology even when exposures were limited to the juvenile period. However, the number of endpoints that were affected in animals from the EE2-Juvenile-Only period were fewer, and typically of a lower magnitude, compared to those observed in the EE2-Gest-Juvenile group. Understanding the effects of environmental estrogen exposures during the juvenile period is critical because humans are exposed to estrogenic pollutants throughout life, including in early childhood.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.reprotox.2024.108722DOI Listing

Publication Analysis

Top Keywords

mammary gland
24
juvenile period
16
mouse mammary
8
morphology mammary
8
mammary
6
gland
6
period
5
vulnerable periods
4
periods mouse
4
gland comparison
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!