miRNA heterologous production in bacteria: A systematic review focusing on the choice of plasmid features and bacterial/prokaryotic microfactory.

Plasmid

Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil. Electronic address:

Published: December 2024

Bacteria, the primary microorganisms used for industrial molecule production, do not naturally generate miRNAs. This study aims to systematically review current literature on miRNA expression systems in bacteria and address three key questions: (1) Which microorganism is most efficient for heterologous miRNA production? (2) What essential elements should be included in a plasmid construction to optimize miRNA expression? (3) Which commercial plasmid is most used for miRNA expression? Initially, 832 studies were identified across three databases, with fifteen included in this review. Three species-Escherichia coli, Salmonella typhimurium, and Rhodovulum sulfidophilum-were found as host organisms for recombinant miRNA expression. A total of 78 miRNAs were identified, out of which 75 were produced in E. coli, one in R. sulfidophilum (miR-29b), and two in S. typhimurium (mi-INHA and miRNA CCL22). Among gram-negative bacteria, R. sulfidophilum emerged as an efficient platform for heterologous production, thanks to features like nucleic acid secretion, RNase non-secretion, and seawater cultivation capability. However, E. coli remains the widely recognized model for large-scale miRNA production in biotechnology market. Regarding plasmids for miRNA expression in bacteria, those with an lpp promoter and multiple cloning sites appear to be the most suitable due to their robust expression cassette. The reengineering of recombinant constructs holds potential, as improvements in construct characteristics maximize the expression of desired molecules. The utilization of recombinant bacteria as platforms for producing new molecules is a widely used approach, with a focus on miRNAs expression for therapeutic contexts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plasmid.2024.102731DOI Listing

Publication Analysis

Top Keywords

mirna expression
12
mirna
9
heterologous production
8
mirna expression?
8
bacteria
6
expression
6
mirna heterologous
4
production
4
production bacteria
4
bacteria systematic
4

Similar Publications

The increasing prevalence of methamphetamine abuse among women, particularly pregnant females, is a global concern. Methamphetamine can readily cross anatomical barriers like the blood-placenta barrier and cause detrimental impacts on the growing fetus. The current research evaluated the effects of prenatal methamphetamine exposure on helping behaviour and neuroinflammatory cascade in the amygdala of male offspring.

View Article and Find Full Text PDF

Aims: This study aimed to explore the role and underlying mechanisms of brain-derived exosomes in traumatic brain injury-induced acute lung injury (TBI-induced ALI), with a particular focus on the potential regulation of ferroptosis through miRNAs and Scd1.

Methods: To elucidate TBI-induced ALI, we used a TBI mouse model. Exosomes were isolated from the brains of these mice and characterized using TEM and NTA.

View Article and Find Full Text PDF

Integrated Transcriptome Analysis Reveals Molecular Subtypes and ceRNA Networks in Multiple Sclerosis.

Degener Neurol Neuromuscul Dis

December 2024

Department of Clinical Laboratory, Jingjiang People's Hospital Affiliated to Yangzhou University, Taizhou, Jiangsu, 214504, People's Republic of China.

Aim: Multiple sclerosis (MS) is a chronic autoimmune disease affecting the central nervous system (CNS). While extensively studied, its molecular subtypes and mechanisms remain poorly understood, hindering the identification of effective therapeutic targets.

Methods: We used ConsensusClusterPlus to analyze transcriptome data from 215 MS patient samples, identifying distinct molecular subtypes.

View Article and Find Full Text PDF

Background: Pterygium is a complex ocular surface disease characterized by the abnormal proliferation and growth of conjunctival and fibrovascular tissues at the corneal-scleral margin. Understanding the underlying molecular mechanisms of pterygium is crucial for developing effective diagnostic and therapeutic strategies.

Methods: To elucidate the molecular mechanisms of pterygium, we conducted a differential gene expression analysis between pterygium and normal conjunctival tissues using high-throughput RNA sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!