A Brain-Gut Pathway for Stress-Induced Microbiome Change.

Gastroenterology

NYU Pain Research Center, Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY; Department of Cell Biology; Department of Pediatrics, NYU Grossman School of Medicine, New York, NY.

Published: September 2024

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2024.09.025DOI Listing

Publication Analysis

Top Keywords

brain-gut pathway
4
pathway stress-induced
4
stress-induced microbiome
4
microbiome change
4
brain-gut
1
stress-induced
1
microbiome
1
change
1

Similar Publications

Background: Long COVID or Post-acute sequelae of COVID-19 is an emerging syndrome, recognized in COVID-19 patients who suffer from mild to severe illness and do not recover completely. Most studies define Long COVID, through symptoms like fatigue, brain fog, joint pain, and headache prevailing four or more weeks post-initial infection. Global variations in Long COVID presentation and symptoms make it challenging to standardize features of Long COVID.

View Article and Find Full Text PDF

Satiety: a gut-brain-relationship.

J Physiol Sci

January 2025

Psychology department, Faculty of Arts and Sciences, University of Balamand, Balamand, Lebanon.

Many hormones act on the hypothalamus to control hunger and satiety through various pathways closely associated with several factors. When food is present in the gastro intestinal (GI) tract, enteroendocrine cells (EECs) emit satiety signals such as cholecystokinin (CCK), glucagon like peptide-1 (GLP-1) and peptide YY (PYY), which can then communicate with the vagus nerve to control food intake. More specifically, satiety has been shown to be particularly affected by the GLP-1 hormone and its receptor agonists that have lately been acknowledged as a promising way to reduce weight.

View Article and Find Full Text PDF

Background: Brain-gut behaviour therapies (BGBT) have gained widespread acceptance as therapeutic modalities for the management of disorders of gut-brain interaction (DGBI). However, existing treatment evaluation methods in the medical field fail to capture the specific elements of scientific rigour unique to behavioural trial evaluation.

Aims: To offer the first consensus on the development and testing of BGBT in DGBI.

View Article and Find Full Text PDF

Advancing microbiome-gut-brain axis science requires systematic, rational and translational approaches to bridge the critical knowledge gaps currently preventing full exploitation of the gut microbiome as a tractable therapeutic target for gastrointestinal, mental and brain health. Current research is still marked by many open questions that undermine widespread application to humans. For example, the lack of mechanistic understanding of probiotic effects means it remains unclear why even apparently closely related strains exhibit different effects in vivo.

View Article and Find Full Text PDF

Digestive and psychiatric disorders tend to co-occur, yet mechanisms remain unclear. Leveraging genetic and transcriptomic data integration, we conduct multi-trait analysis of GWAS (MTAG) and weighted gene co-expression network analysis (WGCNA) to explore shared mechanism between psychiatric and gastrointestinal disorders. Significant genetic correlations were found between these disorders, especially in irritable bowel syndrome (IBS), gastroesophageal reflux disease (GERD), depression (DEP), and neuroticism (NE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!