Microorganisms produce a wide variety of polysaccharides. Due to biosafety considerations, lactic acid bacteria (LAB) are popular producers of exopolysaccharides (EPS) for various applications. In this study, we analyzed the composition and properties of EPS produced by L. delbrueckii ssp. bulgaricus and LAB from clover silage (L. fermentum AG8, L. plantarum AG9) after growth on Man, Rogosa, and Sharpe broth (MRS) and with the addition of flaxseed mucilage (FSM) using chromatography, microscopy, and biochemical methods. We found that adding 0.4 % FSM does not drastically alter the medium's rheology but substantially increases EPS yield (by 3.1 to 3.8 times) and modifies the composition and macrostructure of EPS, as well as changes the spatial organization of LAB cells. The presence of FSM led to the production of xylose- and glucose-enriched EPS, which also contained varying proportions of fucose, rhamnose, arabinose, mannose, glycosamines, and uronic acids, depending on the strain. Most EPS had a low molecular weight (up to 32 kDa), except for EPS produced by L. fermentum AG8 in FSM-containing medium, which had molecular weight of 163 kDa. All EPS exhibited a porous microstructure and demonstrated scavenging capacity for OH- and DPPH-radicals, as well as high levels of α-glucosidase and lipase inhibitory activities, even at low concentrations (<1 g·L of EPS). These characteristics make them promising for use in functional food production and medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136092DOI Listing

Publication Analysis

Top Keywords

flaxseed mucilage
8
composition properties
8
lactic acid
8
acid bacteria
8
eps
8
eps produced
8
fermentum ag8
8
molecular weight
8
influence flaxseed
4
mucilage formation
4

Similar Publications

Effect of PVA-based films incorporated with postbiotics, flax seed mucilage and guar gum to enhance the postharvest quality of fig fruits.

Food Chem

February 2025

Institute of Nanoengineering Research (INER) and Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria West Campus, Pretoria, South Africa.

Eco-friendly antimicrobial bio-composite films (BCF) were produced by using guar gum (GG), flax seed mucilage (FM) and polyvinyl alcohol (PVA), supplemented with cell-free supernatant (CFS) of Lactobacillus plantarum (L. p) and Lactobacillus delbrueckii (L. d) by the solvent casting technique.

View Article and Find Full Text PDF

Microorganisms produce a wide variety of polysaccharides. Due to biosafety considerations, lactic acid bacteria (LAB) are popular producers of exopolysaccharides (EPS) for various applications. In this study, we analyzed the composition and properties of EPS produced by L.

View Article and Find Full Text PDF

Flaxseed mucilage (FSM)-based biofilms were prepared with varying compositions of the elastin/collagen (ELN/COL) protein matrix. These biofilms were characterized by using fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimeter (DSC), and X-ray diffraction (XRD). The thickness, water solubility, moisture content, transparency, and mechanical properties of biofilms were investigated.

View Article and Find Full Text PDF

The present review is novel as it discusses the main findings of researchers on the topic and their implications, as well as highlights the emerging research in this particular area and its future prospective. The seeds of Flax (Linum usitatissimum) extrude mucilage (FSM) that has a diverse and wide range of applications, especially in the food industry and as a pharmaceutical ingredient. FSM has been blended with several food and dairy products to improve gelling ability, optical properties, taste, and user compliance.

View Article and Find Full Text PDF

In the present study, a synbiotic coating of flaxseed mucilage, defatted rice bran carbohydrate, and subsp. BB12 was fabricated for coating dried mango slices (M-P-C). The control samples contained only probiotic bacteria without coating (M-P).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!