Background/aims: There are evidences that a decrease in the functional activity of pancreatic β-cells under type 2 diabetes conditions may be associated with their senescence, therefore, senotherapy may be a prospective strategy for the diabetes treatment.
Methods: The senotherapeutic potential of peroxiredoxin 6 (PRDX6) was studied in RIN-m5F pancreatic β-cells with streptozotocin-induced senescence by measuring markers, associated with senescence.
Results: Exposure to streptozotocin (STZ) resulted in the senescence of the β-cells. The addition of PRDX6 to the culture medium of RIN-m5F β-cells before treatment with STZ decreased the levels of the following senescence markers: the percentage of SA-β-Gal-positive cells, the phosphorylation of histone H2AX and p21 proteins, and the secretion of the proinflammatory cytokine IL-6 but not the anti-inflammatory cytokine IL-10. These effects were accompanied by a decrease in the production of reactive oxygen species (ROS) and the restoration of impaired NF-κB activation. In addition, PRDX6 altered the production of the heat shock protein HSP90: the production of the constitutive form of HSP90-beta decreased, while the level of inducible HSP90-alpha increased.
Conclusion: PRDX6 prevented the senescence of RIN-m5F cells in response to the DNA damage-inducing agent streptozotocin, indicating a potential protective role of PRDX6 in type 2 diabetes mellitus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.33594/000000729 | DOI Listing |
Cell Physiol Biochem
September 2024
Institute of Cell Biophysics, FSC PBCRAS, Institutskaya str., 3, Pushchino, Moscow region, 142290, Russia.
Background/aims: There are evidences that a decrease in the functional activity of pancreatic β-cells under type 2 diabetes conditions may be associated with their senescence, therefore, senotherapy may be a prospective strategy for the diabetes treatment.
Methods: The senotherapeutic potential of peroxiredoxin 6 (PRDX6) was studied in RIN-m5F pancreatic β-cells with streptozotocin-induced senescence by measuring markers, associated with senescence.
Results: Exposure to streptozotocin (STZ) resulted in the senescence of the β-cells.
Int J Mol Sci
September 2024
Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA.
Amylin promoter and transcriptional factors are well-established, inducible factors in the production of the main amyloidogenic pancreatic hormone, human islet amyloid peptide (hIAPP) or amylin. However, posttranscriptional mechanisms driving hIAPP expression in pancreas remain enigmatic, and hence were explored here. The translational assay revealed that both 5' and 3' untranslated regions (UTRs) of hIAPP restricted expression of the luciferase constructs only in constructs driven by the hIAPP promoter.
View Article and Find Full Text PDFArch Toxicol
November 2024
Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
Biology (Basel)
June 2024
Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, Mexico City 04510, Mexico.
Unlabelled: Glucotoxicity may exert its deleterious effects on pancreatic β-cell function via a myriad of mechanisms, leading to impaired insulin secretion and, eventually, type 2 diabetes. β-cell communication requires gap junction channels to be present among these cells. Gap junctions are constituted by transmembrane proteins of the connexins (Cxs) family.
View Article and Find Full Text PDFJ Ethnopharmacol
March 2024
College of Pharmacy, Guizhou University of Traditional Chinese Medicine, No. 4 Dongqingnan Road, Huaxi District, Guiyang, Guizhou 550025, PR China. Electronic address:
Ethnopharmacological Relevance: Pyrrosia petiolosa (Christ) Ching (YBSW) is a Traditional Chinese medicine rich in chlorogenic acids. It is an important component in many Traditional Chinese medicinal hypoglycemic formulas and is commonly used by the Miao people to treat diabetes with good efficacy. Our previous research has suggested that chlorogenic acids may be the active ingredients in YBSW.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!