When analyzing heterogeneous data comprising numerical and categorical attributes, it is common to treat the different data types separately or transform the categorical attributes to numerical ones. The transformation has the advantage of facilitating an integrated multi-variate analysis of all attributes. We propose a novel technique for transforming categorical data into interpretable numerical feature vectors using Large Language Models (LLMs). The LLMs are used to identify the categorical attributes' main characteristics and assign numerical values to these characteristics, thus generating a multi-dimensional feature vector. The transformation can be computed fully automatically, but due to the interpretability of the characteristics, it can also be adjusted intuitively by an end user. We provide a respective interactive tool that aims to validate and possibly improve the AI-generated outputs. Having transformed a categorical attribute, we propose novel methods for ordering and color-coding the categories based on the similarities of the feature vectors.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2024.3460652DOI Listing

Publication Analysis

Top Keywords

feature vectors
12
large language
8
language models
8
transforming categorical
8
categorical data
8
data interpretable
8
categorical attributes
8
propose novel
8
categorical
6
models transforming
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!