A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel Human Induced Pluripotent Stem Cell-Based Model for Retinal Pigment Epithelial Cells to Reveal Possible Disease Mechanisms for Macular Degeneration in Pseudoxanthoma Elasticum. | LitMetric

AI Article Synopsis

  • - Pseudoxanthoma elasticum (PXE) is a rare genetic disorder that leads to issues like retinal problems, skin changes, and hardened arteries, primarily due to calcification beneath the retina, which can cause macular degeneration.
  • - Researchers created and studied two specific induced pluripotent stem cell (hiPSC) lines from a PXE patient, focusing on retinal pigment epithelial (RPE) cells to compare their features with those of healthy cells.
  • - Initial findings showed that PXE-specific RPE cells have increased pigmentation and poorer barrier and phagocytic functions compared to healthy controls, suggesting factors that contribute to macular degeneration in PXE patients, with further validation needed in more patients.

Article Abstract

Pseudoxanthoma elasticum (PXE) is a rare metabolic disease with autosomal recessive inheritance. The manifestation in PXE is represented by retinal complications, pseudoxanthomas of the skin folding areas, and arterial calcification. The retinal complications are caused by the calcification of Bruch's membrane beneath retinal pigment epithelial cells (RPE) that can lead to retinal macular degeneration. The exact mechanism for the retinal pathophysiology is not known, and patients have variable symptoms and findings. Two induced pluripotent stem cell (hiPSC) lines from a patient carrying the common homozygous mutation c.3421C > T, p.Arg1141X in the ATP-binding cassette transporter gene (; OMIM264800) were established and fully characterized. Then, RPE cells were differentiated, and molecular and functional characterization was conducted as a comparison to healthy controls. Data demonstrated that PXE-specific high-quality hiPSC lines can be established from a skin biopsy regardless of the skin-related disease phenotype and disease-specific RPE differentiation is feasible. The molecular and functional assessment of the PXE-specific RPE indicated increased pigmentation and reduced epithelial barrier functions as well as phagocytosis activity as compared to healthy controls. Although preliminary data, this indicates possible RPE-dependent factors that might explain the individual vulnerability of the retinas for macular degeneration in PXE. Future validation of the novel findings with additional PXE patients will be important.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438508PMC
http://dx.doi.org/10.1155/2024/6939920DOI Listing

Publication Analysis

Top Keywords

macular degeneration
12
induced pluripotent
8
pluripotent stem
8
retinal pigment
8
pigment epithelial
8
epithelial cells
8
pseudoxanthoma elasticum
8
retinal complications
8
hipsc lines
8
molecular functional
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!