Introduction: Diabetic macular edema (DME) is a major cause of vision loss in the sick with diabetic retinopathy. The occurrence of DME is closely related to the breakdown of neurovascular coupling; however, its underlying mechanism has not been fully elucidated. The aim of this study was to investigate the diagnostic biomarkers and potential molecular mechanisms associated with neurovascular coupling in DME.
Methods: The differential expression analysis, STEM, and WGCNA were performed from GSE160306 to identify hub genes. The gene expression was validated by RT-qPCR. The relevant mechanisms of action were investigated through GO, KEGG, and GSEA analyses, as well as co-expression networks. Additionally, the LASSO regression analysis and a nomogram were used to demonstrate the diagnostic effectiveness of the model. Finally, the GenDoma platform was utilized to identify drugs with potential therapeutic effects on DME.
Results: Neurotrophic factor receptor (NGFR) was identified as a hub gene related to neurovascular coupling and DME. The expression of NGFR was verified by RT-qPCR in cells. GSEA analysis indicated that high expression of NGFR may affect immunity and inflammatory pathway, thereby regulating neurovascular coupling and mediating the development of DME. The NGFR co-expression network was constructed, which exhibited the correlation with the neurotrophin signaling pathway. Moreover, a diagnostic model for DME based on NGFR and PREX1 demonstrated relatively good diagnostic performance using LASSO regression analysis and the nomogram. And then the GenDoma platform identified drugs with potential therapeutic effects on DME.
Conclusion: The high expression of NGFR may lead to abnormal neurovascular coupling and participate in the occurrence of DME by regulating the immunity, inflammatory and neurotrophin signaling pathway. Detection of NGFR and related expression genes may be beneficial for monitoring the occurrence and development of DME.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427358 | PMC |
http://dx.doi.org/10.3389/fmolb.2024.1332842 | DOI Listing |
Neuroscience
December 2024
Departamento de Neurobiología y Neuropatología, IIBCE, MEC, Montevideo, Uruguay. Electronic address:
Iron is one of the crucial elements for CNS development and function and its deficiency (ID) is the most common worldwide nutrient deficit in the world. Iron deficiency anemia (IDA) in pregnant women and infants is a worldwide health problem due to its high prevalence and its irreversible long-lasting effects on brain development. Even with iron supplementation, IDA during pregnancy and/or breastfeeding can result in irreversible cognitive, motor, and behavioral impairments.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road 88th, Hangzhou, 310009, China.
Chronic ischemia in moyamoya disease (MMD) impaired white matter microstructure and neural functional network. However, the coupling between cerebral blood flow (CBF) and functional connectivity and the association between structural and functional network are largely unknown. 38 MMD patients and 20 sex/age-matched healthy controls (HC) were included for T1-weighted imaging, arterial spin labeling imaging, resting-state functional MRI and diffusion tensor imaging.
View Article and Find Full Text PDFEpilepsia
December 2024
Department of Neurosciences, Université de Montréal, Montréal, Québec, Canada.
Objectives: The pathophysiological mechanisms of status epilepticus (SE) underlying potential brain injury remain largely unclear. This study aims to employ functional near-infrared spectroscopy (fNIRS) combined with video-electroencephalography (vEEG) to monitor brain hemodynamics continuously and non-invasively in critically ill adult patients experiencing electrographic SE. Our primary focus is to investigate neurovascular coupling and cerebrovascular changes associated with seizures, particularly during recurring and/or prolonged episodes.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130031, Jilin, China.. Electronic address:
Vascular cognitive impairment (VCI) is a progressive cognitive impairment caused by cerebrovascular disease or vascular risk factors. It is the second most common type of cognitive impairment after Alzheimer's disease. The pathogenesis of VCI is complex, and neurovascular unit destruction is one of its important mechanisms.
View Article and Find Full Text PDFBiochem Pharmacol
December 2024
Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York 10091, USA.
One possible reason for failure in achieving optimal glycemic control in patients with type 2 diabetes (T2D) is that less attention has been paid to the brain, a fundamental player in glucose homeostasis, that consumes about 25% of total glucose utilization. In addition, animal and human studies indicate that nitric oxide (NO) is a critical player in glucose metabolism. NO synthesis from L-arginine is lower in patients with T2D, and endothelial NO synthase (eNOS)-derived NO bioavailability is lower in T2D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!