Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heliyon
College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
Published: September 2024
Analog circuit is an crucial component of electronic equipment, and the ability to diagnose its fault state quickly and accurately is essential for ensuring the safety and reliability of these electronic equipment. This paper addresses the problems of low diagnostic accuracy and the difficulties associated with model parameter selection in traditional fault diagnosis methods, particularly when dealing with nonlinear and non-stationary fault signals. A fault diagnosis method for analog circuits is proposed, which utilizes Ensemble Empirical Mode Decomposition (EEMD) for features extraction, the Maximum Information Coefficient algorithm (MIC) for features selection, and Particle Swarm Optimization (PSO) for optimizing Support Vector Machine (SVM) classification. Firstly, EEMD is used to adaptively decompose the fault signals in the circuit to extract multi-scale fault features. Secondly, the extracted features are quantitatively evaluated using the Pearson correlation coefficient and energy value analysis, leading to the construction of a fault feature vector is constructed. On this basis, the MIC feature selection algorithm is applied to further optimize the feature vector. Finally, an efficient fault classification model is developed by optimizing the hyperparameters of the SVM model using PSO. The simulation results show that the proposed method effectively overcome the problems of model complexity and low classification accuracy caused by improper selection of wavelet basis function. The accuracy of fault diagnosis and the efficiency of model training are significantly superior to those of traditional methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438004 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e38064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.