Multi-hazard assessment for flood and Landslide risk in Kalimantan and Sumatra: Implications for Nusantara, Indonesia's new capital.

Heliyon

Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, Republic of Korea.

Published: September 2024

Situated within the Ring of Fire and characterized by a tropical climate and high seismic activity, Indonesia is uniquely vulnerable to natural disasters such as floods and landslides. These events pose significant threats to both the population and infrastructure. This study predicts areas exposed to flood and landslide risk by considering various environmental factors related to climate, topography, and land use. The predictive performance of three machine learning models-naïve Bayes, k-nearest neighbors, and random forest (RF)-was evaluated by comparing the AUC, RMSE, and R values of each model. Ultimately, the RF model, which demonstrated the highest accuracy, was used to prioritize disaster impact factors and generate hazard maps. The results identified the interaction of rainfall, land use, and slope aspect as the most critical determinants of hazard occurrence. The predicted hazard maps revealed that approximately 26.7 % of the study area was vulnerable to either floods or landslides, with 16.8 % of the area experiencing both. The new capital of Nusantara showed a relatively higher multi-hazard risk than did the overall study area and protected zones, with 22.1 % of the hazard area vulnerable to both flooding and landslides. In single hazard zones, areas classified as at risk for floods had a higher mean probability of experiencing both hazards (43 %), as compared to areas classified as at risk for landslides (22 %). As a result, urban planners and relevant stakeholders can now utilize the hazard maps developed in this study to prioritize infrastructure reinforcement and disaster risk areas, integrating land use planning with risk assessment to mitigate the impact of disasters. By employing these strategies, Indonesia and other countries facing similar challenges can now enhance their disaster preparedness and response capabilities in new capital regions and other areas, ultimately planning for more sustainable urban development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437940PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e37789DOI Listing

Publication Analysis

Top Keywords

hazard maps
12
flood landslide
8
landslide risk
8
floods landslides
8
study area
8
area vulnerable
8
areas classified
8
classified risk
8
risk
7
hazard
6

Similar Publications

Spatial, temporal, and spatiotemporal cluster detection of malaria incidence in Southwest Ethiopia.

Front Public Health

January 2025

Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.

Background: Malaria is a major global health hazard, particularly in developing countries such as Ethiopia, where it contributes to high morbidity and mortality rates. According to reports from the South Omo Zone Health Bureau, despite various interventions such as insecticide-treated bed nets and indoor residual spraying, the incidence of malaria has increased in recent years. Therefore, this study aimed to assess the spatial, temporal, and spatiotemporal variation in malaria incidence in the South Omo Zone, Southwest Ethiopia.

View Article and Find Full Text PDF

The efficacy of traceability analysis is often limited by a lack of information on influencing factors for heavy metal (HM) contaminations in soil, such as spatial correlations between HM concentrations and influencing factors. To overcome this limitation, a novel data-driven framework was established to identify influencing factors for soil HM concentrations in an industrialised study area, in Guangdong Province, China, mainly using random forest (RF) and bivariate local Moran's I (BLMI) on the basis of the 577 soil samples and the 18 environmental covariates. The quantitative contributions of the 18 influencing factors for the Cd, As, Pb, and Cr concentrations were determined by the optimised RF.

View Article and Find Full Text PDF

Spatial joint hazard assessment of landslide susceptibility and intensity within a single framework: Environmental insights from the Wenchuan earthquake.

Sci Total Environ

February 2025

HEOA - West China Health & Medical Geography Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610044, China; Institute for Healthy Cities and West China Research Centre for Rural Health Development, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan 610044, China. Electronic address:

To comprehensively assess regional landslide hazards, we propose a geospatial approach that jointly evaluates both the probability of occurrence (susceptibility) and potential destructive power (intensity) within a single framework, overcoming the limitations of previous studies that treated these two disaster scenarios independently. Focusing on the largest landslide event triggered by the Wenchuan earthquake in China, we collected landslide occurrence and count data at the slope unit level, alongside 18 environmental factors, including seismic data. To enable this multi-hazard single-framework evaluation, we employed two Bayesian spatial joint regressions: the spatial shared component model (SSCM) and the spatial shared hyperparameter model (SSHM).

View Article and Find Full Text PDF

The source-receptor relationship of atmospheric mercury is a critical environmental concern. However, comprehensive evaluations of mercury pollution based on spatially resolved and time-averaged data have not yet been conducted in Korea. In this study, the spatio-temporal variations of total gaseous mercury (TGM) and mercury isotopes were examined using passive air samplers at 30 sites in Ulsan over one year.

View Article and Find Full Text PDF

An open-source geodatabase and its associate WebGIS platform (CONNECTOSED) were developed to collect and utilize data for the Sediment Flow Connectivity Index (SfCI) for the Apulia region of southern Italy. Maps depicting sediment mobility and connectivity across the hydrographic basins of the Apulia region were generated and stored in the geodatabase. This geodatabase is organized into folders containing data in TIFF, shapefile, Jpeg and Pdf formats, including input variables (digital elevation model, land cover map, rainfall map, and soil units dataset for each hydrographic basin), classification graphs (ranking of variable values), dimensionless index maps (slope, ruggedness, rainfall, land cover, and soil stability) and key products (maps of sediment mobility, SfCI, and applied SfCI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!