Flow assurance is a long-term challenge for oil and gas exploration as it plays a key role in designing safe and efficient operation techniques to ensure the uninterrupted transport of reservoir fluids. In this regard, the sensitive monitoring of the scale formation process is important by providing an accurate assessment of the minimum inhibitor concentration (MIC) of antiscale products. The optimum dosage of antiscale inputs is of pivotal relevance as their application at concentrations both lower and higher than MIC can imply pipeline blockages, critically hindering the entire supply chain of oil-related inputs and products to society. Using a simple and low-cost impedimetric platform, we here address the monitoring of the scale formation on stainless-steel capillaries from its early stages under real topside (ambient pressure and 60 °C) and subsea (1000 psi and 80 °C) sceneries of the oil industry. The method could continuously gauge the scale formation with a sensitivity higher than the conventional approach, i.e., the tube blocking test (TBT), which proved to be mandatory for avoiding misleading inferences on the MIC. In fact, whereas our sensor could entail accurate MICs, as confirmed by scanning electron microscopy, TBT suffered from negative deviations, with the predicted MICs being lower than the real values. Importantly, the impedance measurements were performed through a hand-held, user-friendly workstation. In this way, our method is envisioned to deliver an attractive and readily deployable platform to combat the scale formation issues because it can continuously monitor the salt precipitation from its early stages and yield the accurate determination of MIC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425940 | PMC |
http://dx.doi.org/10.1021/acsomega.4c04912 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!