Unlabelled: Breast cancer is the leading cause of cancer-related mortality among women worldwide. MicroRNAs (miRNAs), short non-coding RNAs, have been implicated in cancer-related processes such as tumor development, metastasis, angiogenesis, and drug resistance. Circulating miRNA-373 demonstrates higher relative exosomal serum levels in breast cancer patients compared to healthy women, making it a potential non-invasive biomarker. Separately, vascular endothelial growth factor (VEGF) is crucial for angiogenesis, and is elevated in breast cancer. In this case-control study, we aimed to investigate the diagnostic accuracy of miRNA-373 and VEGF as biomarkers for early-stage breast cancer detection. Serum samples were collected from 120 participants, comprising 30 breast cancer patients, 30 benign breast tumor patients, and 60 healthy controls, over the period of April 2022 to January 2023. MiRNA-373 expression was analyzed by reverse transcription-quantitative PCR with GAPDH normalisation, while VEGF levels in serum samples were measured by ELISA. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of both biomarkers. MiRNA-373 expression (∆Ct) differed significantly between the three groups (breast cancer: - 12.20 ± 1.11; benign tumors: - 12.79 ± 1.09; controls: - 13.64 ± 0.93). ROC analysis revealed moderate discriminative power for miRNA-373 (specificity = 76.7%; sensitivity = 70.0%; AUC = 0.839) and excellent discriminative power for VEGF (specificity = 85.0%; sensitivity = 90.0%; AUC = 0.944) in distinguishing early-stage breast cancer patients from healthy controls. In summary, this study demonstrates the promising potential of miRNA-373 as an early diagnostic biomarker for breast cancer detection, requiring further validation in larger cohorts. Our findings also reinforce the diagnostic value of circulating VEGF levels for breast cancer screening.
Supplementary Information: The online version contains supplementary material available at 10.1007/s12291-023-01174-9.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436544 | PMC |
http://dx.doi.org/10.1007/s12291-023-01174-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!