Confidence and second-order errors in cortical circuits.

PNAS Nexus

Department of Physiology, University of Bern, Bühlplatz 5, Bern 3012, Switzerland.

Published: September 2024

Minimization of cortical prediction errors has been considered a key computational goal of the cerebral cortex underlying perception, action, and learning. However, it is still unclear how the cortex should form and use information about uncertainty in this process. Here, we formally derive neural dynamics that minimize prediction errors under the assumption that cortical areas must not only predict the activity in other areas and sensory streams but also jointly project their confidence (inverse expected uncertainty) in their predictions. In the resulting neuronal dynamics, the integration of bottom-up and top-down cortical streams is dynamically modulated based on confidence in accordance with the Bayesian principle. Moreover, the theory predicts the existence of cortical second-order errors, comparing confidence and actual performance. These errors are propagated through the cortical hierarchy alongside classical prediction errors and are used to learn the weights of synapses responsible for formulating confidence. We propose a detailed mapping of the theory to cortical circuitry, discuss entailed functional interpretations, and provide potential directions for experimental work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437657PMC
http://dx.doi.org/10.1093/pnasnexus/pgae404DOI Listing

Publication Analysis

Top Keywords

prediction errors
12
second-order errors
8
cortical
7
errors
6
confidence
5
confidence second-order
4
errors cortical
4
cortical circuits
4
circuits minimization
4
minimization cortical
4

Similar Publications

In motor adaptation, learning is thought to rely on a combination of several processes. Two of these are implicit learning (incidental updating of the movement due to sensory prediction error) and explicit learning (intentional adjustment to reduce target error). The explicit component is thought to be fast adapting, while the implicit one is slow.

View Article and Find Full Text PDF

Prediction of body weight (BW) using biometric measurements is an important tool especially for animal welfare and automatic phenotyping tools that needs mathematical models. In this study, it was aimed to predict the BW using body length (BL), chest girth (CG) and width of the waist (WW) for rabbits of the maternal form of Hyla NG. The standard rabbit-raising practices were applied for the animals.

View Article and Find Full Text PDF

Unlabelled: Piperacillin-tazobactam (TZP) is a commonly used broad-spectrum agent. OXA-1 β-lactamases drive global Enterobacterales TZP resistance and raise MICs to the clinical breakpoints (8/4-16/4 µg/mL), making susceptibility testing challenging. Two TZP disks are used globally.

View Article and Find Full Text PDF

Tobramycin dosing in patients with cystic fibrosis (CF) is challenged by its high pharmacokinetic (PK) variability and narrow therapeutic window. Doses are typically individualized using two-sample log-linear regression (LLR) to quantify the area under the concentration-time curve (AUC). Bayesian model-informed precision dosing (MIPD) may allow dose individualization with fewer samples; however, the relative performance of these methods is unknown.

View Article and Find Full Text PDF

Machine Learning Algorithm-Based Prediction of Diabetes Among Female Population Using PIMA Dataset.

Healthcare (Basel)

December 2024

Department of Computer Science, School of Arts, Humanities and Social Sciences, University of Roehampton, London SW15 5PH, UK.

: Diabetes is a metabolic disorder characterized by increased blood sugar levels. Early detection of diabetes could help individuals to manage and delay the progression of this disorder effectively. Machine learning (ML) methods are important in forecasting the progression and diagnosis of different medical problems with better accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!