Minimization of cortical prediction errors has been considered a key computational goal of the cerebral cortex underlying perception, action, and learning. However, it is still unclear how the cortex should form and use information about uncertainty in this process. Here, we formally derive neural dynamics that minimize prediction errors under the assumption that cortical areas must not only predict the activity in other areas and sensory streams but also jointly project their confidence (inverse expected uncertainty) in their predictions. In the resulting neuronal dynamics, the integration of bottom-up and top-down cortical streams is dynamically modulated based on confidence in accordance with the Bayesian principle. Moreover, the theory predicts the existence of cortical second-order errors, comparing confidence and actual performance. These errors are propagated through the cortical hierarchy alongside classical prediction errors and are used to learn the weights of synapses responsible for formulating confidence. We propose a detailed mapping of the theory to cortical circuitry, discuss entailed functional interpretations, and provide potential directions for experimental work.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437657 | PMC |
http://dx.doi.org/10.1093/pnasnexus/pgae404 | DOI Listing |
J Neurophysiol
January 2025
KU Leuven, Department of Movement Sciences, B-3000 Leuven, Belgium.
In motor adaptation, learning is thought to rely on a combination of several processes. Two of these are implicit learning (incidental updating of the movement due to sensory prediction error) and explicit learning (intentional adjustment to reduce target error). The explicit component is thought to be fast adapting, while the implicit one is slow.
View Article and Find Full Text PDFVet Med Sci
January 2025
Andırın Vocational School, Department of Computer Technologies, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Türkiye.
Prediction of body weight (BW) using biometric measurements is an important tool especially for animal welfare and automatic phenotyping tools that needs mathematical models. In this study, it was aimed to predict the BW using body length (BL), chest girth (CG) and width of the waist (WW) for rabbits of the maternal form of Hyla NG. The standard rabbit-raising practices were applied for the animals.
View Article and Find Full Text PDFJ Clin Microbiol
January 2025
Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Unlabelled: Piperacillin-tazobactam (TZP) is a commonly used broad-spectrum agent. OXA-1 β-lactamases drive global Enterobacterales TZP resistance and raise MICs to the clinical breakpoints (8/4-16/4 µg/mL), making susceptibility testing challenging. Two TZP disks are used globally.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2025
InsightRX, San Francisco, California, USA.
Tobramycin dosing in patients with cystic fibrosis (CF) is challenged by its high pharmacokinetic (PK) variability and narrow therapeutic window. Doses are typically individualized using two-sample log-linear regression (LLR) to quantify the area under the concentration-time curve (AUC). Bayesian model-informed precision dosing (MIPD) may allow dose individualization with fewer samples; however, the relative performance of these methods is unknown.
View Article and Find Full Text PDFHealthcare (Basel)
December 2024
Department of Computer Science, School of Arts, Humanities and Social Sciences, University of Roehampton, London SW15 5PH, UK.
: Diabetes is a metabolic disorder characterized by increased blood sugar levels. Early detection of diabetes could help individuals to manage and delay the progression of this disorder effectively. Machine learning (ML) methods are important in forecasting the progression and diagnosis of different medical problems with better accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!