Assessment of the Antimicrobial Properties of Orthodontic Bonding Materials.

J Pharm Bioallied Sci

Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka, Saudi Arabia.

Published: July 2024

Background: Orthodontic bonding materials are extensively used in dentistry, but their antimicrobial properties are of growing concern due to the risk of biofilm formation and associated complications. Understanding the antimicrobial efficacy of these materials is crucial for maintaining oral health during orthodontic treatment.

Materials And Methods: In this study, we evaluated the antimicrobial properties of various orthodontic bonding materials against common oral pathogens. Samples of bonding materials were prepared and exposed to microbial strains including Streptococcus mutans, Porphyromonas gingivalis, and Candida albicans. Antimicrobial activity was assessed using agar diffusion assays and microbial viability assays.

Results: The tested orthodontic bonding materials exhibited varying degrees of antimicrobial activity. Material A showed a zone of inhibition of 12 mm against S. mutans, 8 mm against P. gingivalis, and 6 mm against C. albicans. Material B exhibited slightly higher antimicrobial activity with inhibition zones of 14 mm, 10 mm, and 8 mm against S. mutans, P. gingivalis, and C. albicans, respectively. Material C displayed the highest antimicrobial activity, with inhibition zones of 16 mm against S. mutans, 12 mm against P. gingivalis, and 10 mm against C. albicans. Microbial viability assays confirmed the efficacy of these materials in reducing microbial growth.

Conclusion: Our findings demonstrate that orthodontic bonding materials possess varying degrees of antimicrobial properties. Material C exhibited the highest efficacy against the tested microbial strains. Incorporating antimicrobial agents into orthodontic bonding materials may contribute to the prevention of oral infections during orthodontic treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11426720PMC
http://dx.doi.org/10.4103/jpbs.jpbs_326_24DOI Listing

Publication Analysis

Top Keywords

bonding materials
28
orthodontic bonding
24
antimicrobial properties
16
antimicrobial activity
16
mutans gingivalis
12
gingivalis albicans
12
materials
9
antimicrobial
9
orthodontic
8
properties orthodontic
8

Similar Publications

Efficient Extraction of Phenols from Coal Tar and Preparation of Phenolic Resin-Based Porous Carbon for Advanced Supercapacitor Application.

Small

January 2025

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China.

Developing simple and efficient extraction methods for phenolic substances from coal tar, which facilitate their direct transformation into high-performance electrode materials, holds considerable practical significance. In this study, amide-zinc chloride deep eutectic solvents are employed for efficient phenol extraction. The optimal phenol extraction process is subsequently investigated, and it is found that the robust hydrogen bonding interactions between solvents and phenols significantly enhance extraction efficiency.

View Article and Find Full Text PDF

Weakening Pd─O Bonds by an Amorphous Pd Layer to Promote Electrocatalysis.

Small

January 2025

Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China.

Construction of core-shell structured electrocatalysts with a thin noble metal shell is an effective strategy for lowering the usage of the noble metal and improving electrocatalytic properties because of the structure-induced geometric and electronic effects. Here, the synthesis of a novel core-shell structured nanocatalyst consisting of a thin amorphous Pd shell and a crystalline PdCu core and its significantly improved electrocatalytic properties for both formic acid oxidation and oxygen reduction reactions are shown. The electrocatalyst exhibits 4.

View Article and Find Full Text PDF

Co-assemblies of Silver Nanoclusters and Fullerenols With Enhanced Third-Order Nonlinear Optical Response.

Small Methods

January 2025

National Engineering Research Center for Colloidal Materials, Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

Exploring potential third-order nonlinear optical (NLO) materials attracts ever-increasing attention. Given that the atomically precise and rich adjustable structural features of silver nanoclusters (Ag NCs), as well as the unique π-electron conjugated system of carbon-based nanomaterials, a supramolecular co-assembly amplification strategy to enhance the luminescent intensity and NLO performance of the hybrids of the two components, are constructed and the relationship between structures and optical properties are investigated. By combining water soluble Ag NCs [(NH)[Ag(mna)] (Hmna = 2-mercaptonicotinic acid, abbreviated to Ag─NCs hereafter) containing uncoordinated carboxyl groups with water-soluble fullerene derivatives modified with multiple hydroxyl groups (fullerenols, C─OH), the π-electron delocalization is expanded owing to non-covalent hydrogen bonding effect between Ag6─NCs and C─OH, which provides a feasible basis for realizing the NLO response.

View Article and Find Full Text PDF

Aluminum-carbon nanotube (Al-CNT) composites represent a cutting-edge class of materials characterized by their exceptional mechanical, thermal, and electrical properties, making them highly promising for aerospace, automotive, electronics, and energy applications. This review systematically examines the impact of various fabrication methods, including conventional powder metallurgy, diffusion and reaction coupling, as well as adhesive and reaction bonding on the microstructure and performance of Al-CNT composites. The analysis emphasizes the critical role of CNT dispersion, interfacial bonding, and the formation of reinforcing phases, such as AlC and AlO, in determining the mechanical strength, wear resistance, corrosion resistance, and thermal stability of these materials.

View Article and Find Full Text PDF

To investigate the water damage at the interface between emulsified asphalt and aggregate under the action of external water infiltration, firstly, cetyltrimethylammonium bromide was used as an emulsifier to prepare emulsified asphalt in the laboratory, and its basic properties were tested. Then, based on molecular dynamics, an emulsified asphalt-aggregate interface model with different water contents was constructed to calculate the adhesion work of the emulsified asphalt-aggregate interface. The results show that the simulated values of emulsified asphalt density, cohesive energy density, and solubility are in good agreement with the experimental values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!