AI Article Synopsis

  • Photocyclisation reactions provide a useful method for creating complex polycyclic structures, especially in natural product synthesis, with the [4 + 2] reaction being less explored than its [2 + 2] counterpart.
  • This study introduced the rapid assembly of a -type scaffold using an intramolecular Diels-Alder reaction on a dehydrosecodine-type intermediate, achieving up to 77% yield under mild conditions via a micro-flow system.
  • The research highlights the direct UV-LED activation of the DHP moiety, allowing for efficient [4 + 2] and [2 + 2] cyclisations without needing external photocatalysts, thus showcasing a novel approach to exploiting the reactivity of polyuns

Article Abstract

Photocyclisation reactions offer a convenient and versatile method for constructing complex polycyclic scaffolds, particularly in the synthesis of natural products. While the [2 + 2] photocycloaddition reaction is well-established and extensively reported, the [4 + 2] counterpart direct photochemical means remains challenging and relatively unexplored. In this work, we devised the rapid assembly of the -type scaffold through photochemical intramolecular Diels-Alder reaction using a common biomimetic dehydrosecodine-type intermediate having vinyl indole and dihydropyridine (DHP) sub-units. Exploiting a micro-flow system, the medicinally important -type scaffold was obtained up to 77% yield under mild, neutral conditions at room temperature. This study demonstrated the site-selective activation of the DHP moiety by direct UV-LED irradiation, eliminating the need for external photocatalysts or photosensitisers and showing good tolerance to a wide range of stabilised dehydrosecodine-type substrates. By adjusting the spatial arrangement of the DHP ring and the vinyl indole group, this versatile photochemical approach efficiently facilitates both [4 + 2] and [2 + 2] cyclisations, assembling architecturally complex multicyclic scaffolds. Precise photoactivation of the DHP subunit, generating short-lived biradical species, enabled the new way of harnessing the hidden but innately pre-encoded reactivity of the polyunsaturated dehydrosecodine-type intermediate. These photo-mediated [4 + 2] cyclisation and divergent [2 + 2] cycloadditions are distinct from biosynthetic processes, which are mainly mediated through concerted thermal cycloadditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11423653PMC
http://dx.doi.org/10.1039/d4sc02597kDOI Listing

Publication Analysis

Top Keywords

-type scaffold
12
direct photochemical
8
photochemical intramolecular
8
dehydrosecodine-type substrates
8
divergent cycloadditions
8
micro-flow system
8
dehydrosecodine-type intermediate
8
vinyl indole
8
cycloadditions
4
intramolecular cycloadditions
4

Similar Publications

Neointimal coverage and stent apposition, as assessed from intravascular optical coherence tomography (IVOCT) images, are crucial for optimizing percutaneous coronary intervention (PCI). Existing state-of-the-art computer algorithms designed to automate this analysis often treat lumen and stent segmentations as separate target entities, applicable only to a single stent type and overlook automation of preselecting which pullback segments need segmentation, thus limit their practicality. This study aimed for an algorithm capable of intelligently handling the entire IVOCT pullback across different phases of PCI and clinical scenarios, including the presence and coexistence of metal and bioresorbable vascular scaffold (BVS), stent types.

View Article and Find Full Text PDF

Decoding the regulatory roles of circular RNAs in cardiac fibrosis.

Noncoding RNA Res

April 2025

Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.

Cardiovascular diseases (CVDs) are the primary cause of death globally. The evolution of nearly all types of CVDs is characterized by a common theme: the emergence of cardiac fibrosis. The precise mechanisms that trigger cardiac fibrosis are still not completely understood.

View Article and Find Full Text PDF

Background: Acellular dermal matrix (ADM) has been introduced as an alternative to autogenous grafts. This study assessed the biological behavior of mesenchymal stem cells (MSCs) on two types of commercial ADM scaffolds.

Methods: The present in vitro study investigated the behavior of MSCs cultured on scaffold type I CenoDerm® (Tissue Regeneration Corporation) and type II Acellular Dermis (Iranian Tissue Product Co.

View Article and Find Full Text PDF

Hydrophobicity is associated with drug transport across membranes and is expressed as the partition coefficient log P for neutral drugs and the distribution coefficient log D for acidic and basic drugs. The log P and log D predictions are deductively (or with artificial intelligence) estimated as the sum of the partial contributions of the scaffold and substituents of a single molecule and are used widely and affirmatively. However, their predictions have not always been comprehensively accurate beyond scaffold differences.

View Article and Find Full Text PDF

Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!