Vision science and visual neuroscience seek to understand how stimulus and sensor properties limit the precision with which behaviorally-relevant latent variables are encoded and decoded. In the primate visual system, binocular disparity-the canonical cue for stereo-depth perception-is initially encoded by a set of binocular receptive fields with a range of spatial frequency preferences. Here, with a stereo-image database having ground-truth disparity information at each pixel, we examine how response normalization and receptive field properties determine the fidelity with which binocular disparity is encoded in natural scenes. We quantify encoding fidelity by computing the Fisher information carried by the normalized receptive field responses. Several findings emerge from an analysis of the response statistics. First, broadband (or feature-unspecific) normalization yields Laplace-distributed receptive field responses, and narrowband (or feature-specific) normalization yields Gaussian-distributed receptive field responses. Second, the Fisher information in narrowband-normalized responses is larger than in broadband-normalized responses by a scale factor that grows with population size. Third, the most useful spatial frequency decreases with stimulus size and the range of spatial frequencies that is useful for encoding a given disparity decreases with disparity magnitude, consistent with neurophysiological findings. Fourth, the predicted patterns of psychophysical performance, and absolute detection threshold, match human performance with natural and artificial stimuli. The current computational efforts establish a new functional role for response normalization, and bring us closer to understanding the principles that should govern the design of neural systems that support perception in natural scenes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429615PMC
http://dx.doi.org/10.1101/2024.09.05.611536DOI Listing

Publication Analysis

Top Keywords

receptive field
16
field responses
12
range spatial
8
spatial frequency
8
response normalization
8
natural scenes
8
normalization yields
8
normalization
5
receptive
5
responses
5

Similar Publications

Nexus: A versatile console for advanced low-field MRI.

Magn Reson Med

January 2025

Department 8.1 - Biomedical Magnetic Resonance, Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.

Purpose: To develop a low-cost, high-performance, versatile, open-source console for low-field MRI applications that can integrate a multitude of different auxiliary sensors.

Methods: A new MR console was realized with four transmission and eight reception channels. The interface cards for signal transmission and reception are installed in PCI Express slots, allowing console integration in a commercial PC rack.

View Article and Find Full Text PDF

Reading, face recognition, and navigation are supported by visuospatial computations in category-selective regions across ventral, lateral, and dorsal visual streams. However, the nature of visuospatial computations across streams and their development in adolescence remain unknown. Using fMRI and population receptive field (pRF) modeling in adolescents and adults, we estimate pRFs in high-level visual cortex and determine their development.

View Article and Find Full Text PDF

Brief monocular deprivation during a developmental critical period, but not thereafter, alters the receptive field properties (tuning) of neurons in visual cortex, but the characteristics of neural circuitry that permit this experience-dependent plasticity are largely unknown. We performed repeated calcium imaging at neuronal resolution to track the tuning properties of populations of excitatory layer 2/3 neurons in mouse visual cortex during or after the critical period, as well as in mutant mice that sustain critical-period plasticity as adults. The instability of tuning for populations of neurons was greater in juvenile mice and adult mutant mice.

View Article and Find Full Text PDF

Chip defect detection is a crucial aspect of the semiconductor production industry, given its significant impact on chip performance. This paper proposes a lightweight neural network with dual decoding paths for LED chip segmentation, named LDDP-Net. Within the LDDP-Net framework, the receptive field of the MobileNetv3 backbone is modified to mitigate information loss.

View Article and Find Full Text PDF

A Parallel Image Denoising Network Based on Nonparametric Attention and Multiscale Feature Fusion.

Sensors (Basel)

January 2025

School of Electronic and Information Engineering, Ankang University, Ankang 725000, China.

Convolutional neural networks have achieved excellent results in image denoising; however, there are still some problems: (1) The majority of single-branch models cannot fully exploit the image features and often suffer from the loss of information. (2) Most of the deep CNNs have inadequate edge feature extraction and saturated performance problems. To solve these problems, this paper proposes a two-branch convolutional image denoising network based on nonparametric attention and multiscale feature fusion, aiming to improve the denoising performance while better recovering the image edge and texture information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!