Orthopaedic researchers need new strategies for engaging diverse students. Our field has demonstrated noticeable gaps in racial, ethnic, and gender diversity, which inhibit our ability to innovate and combat the severe socioeconomic burden of musculoskeletal disorders. Towards this goal, we designed, implemented, and evaluated Learning on a Limb, an orthopaedic research outreach module to teach diverse high school students about orthopaedic research. During the 4-hr module, students completed hands-on activities to learn how biomechanical testing, microcomputed tomography, cell culture, and histology are used in orthopaedic research. Over three years, we recruited 32 high school students from the Greater Philadelphia Area to participate in Learning on a Limb. Most participants identified as racial/ethnic or gender minorities in orthopaedic research. Using pre/post-tests, we found that students experienced significant learning gains of 51 percentage points from completing Learning on a Limb. In addition to teaching students about orthopaedic research, post-survey data demonstrated that participating in Learning on a Limb strongly influenced students' interest in orthopaedic research. Several students acted on this interest by completing summer research experiences in the McKay Orthopaedic Research Laboratory at the University of Pennsylvania. Learning on a Limb instructors also benefited by having the opportunity to "pay it forward" to the next generation of students and build community within their department. Empowering institutions to host modules like Learning on a Limb would synergistically inspire diverse high school students and strengthen community within orthopaedic departments to ultimately enhance orthopaedic research innovations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430081PMC
http://dx.doi.org/10.1101/2024.09.16.612729DOI Listing

Publication Analysis

Top Keywords

learning limb
28
high school
16
school students
16
students
10
orthopaedic
10
learning
8
outreach module
8
diverse high
8
students orthopaedic
8
limb
6

Similar Publications

Accurate survival prediction of patients with long-bone metastases is challenging, but important for optimizing treatment. The Skeletal Oncology Research Group (SORG) machine learning algorithm (MLA) has been previously developed and internally validated to predict 90-day and 1-year survival. External validation showed promise in the United States and Taiwan.

View Article and Find Full Text PDF

The skills necessary to perform diagnostic perineural anesthesia in equids belongs to one of the Day One Competences of a veterinarian, so every veterinary graduate should be able to perform them correctly. For logistical, hygienic and ethical reasons, practical exercises on cadaver limbs are not accessible to all students. Two equine distal limb simulators were developed and evaluated as an additional instructional tool to train the required skills.

View Article and Find Full Text PDF

Introduction: The use of robots for arthroplasty is gaining momentum in recent times to provide accuracy in bony cuts and alignment. We aimed to study the efficacy of coronal plane correction with a new robotic system (VELYS™ Robotic-Assisted Surgery) and also the effect of the learning curve of robot-assisted total knee arthroplasty (RATKA) on outcomes. We hypothesize that the benefits of RATKA are not limited to only surgeons having specific training in robotic knee replacement.

View Article and Find Full Text PDF

Clinical validation of an individualized auto-adaptative serious game for combined cognitive and upper limb motor robotic rehabilitation after stroke.

J Neuroeng Rehabil

January 2025

Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Neuro Musculo Skeletal Lab (NMSK), UCLouvain, Avenue Mounier 53, 1200, Brussels, Belgium.

Background: Intensive rehabilitation through challenging and individualized tasks are recommended to enhance upper limb recovery after stroke. Robot-assisted therapy (RAT) and serious games could be used to enhance functional recovery by providing simultaneous motor and cognitive rehabilitation.

Objective: The aim of this study is to clinically validate the dynamic difficulty adjustment (DDA) mechanism of ROBiGAME, a robot serious game designed for simultaneous rehabilitation of motor impairments and hemispatial neglect.

View Article and Find Full Text PDF

Electromyography (EMG) is increasingly used in stroke assessment research, with studies showing that EMG co-contraction (EMG-CC) of upper limb muscles can differentiate stroke patients from healthy individuals and correlates with clinical scales assessing motor function. This suggests that EMG-CC has potential for both assessing motor impairments and monitoring recovery in stroke patients. However, systematic reviews on EMG-CC's effectiveness in stroke assessment are lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!