Gene families are groups of evolutionarily-related genes. One large gene family that has experienced rapid evolution is the Major Histocompatibility Complex (MHC), whose proteins serve critical roles in innate and adaptive immunity. Across the ~60 million year history of the primates, some MHC genes have turned over completely, some have changed function, some have converged in function, and others have remained essentially unchanged. Past work has typically focused on identifying MHC alleles within particular species or comparing gene content, but more work is needed to understand the overall evolution of the gene family across species. Thus, despite the immunologic importance of the MHC and its peculiar evolutionary history, we lack a complete picture of MHC evolution in the primates. We readdress this question using sequences from dozens of MHC genes and pseudogenes spanning the entire primate order, building a comprehensive set of gene and allele trees with modern methods. Overall, we find that the Class I gene subfamily is evolving much more quickly than the Class II gene subfamily, with the exception of the Class II MHC-DRB genes. We also pay special attention to the often-ignored pseudogenes, which we use to reconstruct different events in the evolution of the Class I region. We find that despite the shared function of the MHC across species, different species employ different genes, haplotypes, and patterns of variation to achieve a successful immune response. Our trees and extensive literature review represent the most comprehensive look into MHC evolution to date.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429698PMC
http://dx.doi.org/10.1101/2024.09.16.613318DOI Listing

Publication Analysis

Top Keywords

gene family
12
major histocompatibility
8
histocompatibility complex
8
gene
8
evolution gene
8
mhc
8
mhc genes
8
mhc evolution
8
class gene
8
gene subfamily
8

Similar Publications

Background: An estimated 17% of all couples worldwide are involuntarily childless (infertile). The clinically identifiable causes of infertility can be found in the male or female partner or in both. The molecular pathophysiology of infertility still remains unclear in many cases but is increasingly being revealed by genetic analyses.

View Article and Find Full Text PDF

Deficiency or excess of mineral elements in the environment is a primary factor limiting crop yields and nutritional quality. Lotus (Nelumbo nucifera) is an important aquatic crop in Asia, but the mechanism for accumulating mineral nutrients and coping with nutrient deficiency/excess is still largely unknown. Here, we identified NnMTP10, a member of the cation diffusion facilitator family, by screening the cDNA library of lotus.

View Article and Find Full Text PDF

OsMAINTENANCE OF MERISTEM LIKE 1 controls style number at high temperatures in rice.

Plant Mol Biol

January 2025

Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133, Milan, Italy.

OsMAIL1 encodes for a rice protein of the Plant Mobile Domain (PMD) family and is strongly upregulated during floral induction in response to the presence of the florigens Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1). Although OsMAIL1 expression depends on the florigens, osmail1 null mutants do not show delay in flowering time, rather OsMAIL1 participates in ensuring successful reproduction. Indeed, when day temperatures reach 35 °C (7 °C higher than standard greenhouse conditions), osmail1 mutants show increased sterility due to abnormal pistil development with about half of the plants developing three styles topped by stigmas.

View Article and Find Full Text PDF

Ice plant (Mesembryanthemum crystallinum L.) is a halophyte and an inducible CAM plant. Ice plant seedlings display moderate salt tolerance, with root growth unaffected by 200 mM NaCl treatments, though hypocotyl elongation is hindered in salt-stressed etiolated seedlings.

View Article and Find Full Text PDF

Rice (Oryza sativa L.), Poaceae family, forms staple diet of half of world's population, and brinjal (Solanum melongena L.), an important solanaceous crop, are consumed worldwide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!