Optimal transport reveals dynamic gene regulatory networks via gene velocity estimation.

bioRxiv

Department of Computer Science, Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA.

Published: September 2024

Inferring gene regulatory networks from gene expression data is an important and challenging problem in the biology community. We propose OTVelo, a methodology that takes time-stamped single-cell gene expression data as input and predicts gene regulation across two time points. It is known that the rate of change of gene expression, which we will refer to as gene velocity, provides crucial information that enhances such inference; however, this information is not always available due to the limitations in sequencing depth. Our algorithm overcomes this limitation by estimating gene velocities using optimal transport. We then infer gene regulation using time-lagged correlation and Granger causality via regularized linear regression. Instead of providing an aggregated network across all time points, our method uncovers the underlying dynamical mechanism across time points. We validate our algorithm on 13 simulated datasets with both synthetic and curated networks and demonstrate its efficacy on 4 experimental data sets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429941PMC
http://dx.doi.org/10.1101/2024.09.12.612590DOI Listing

Publication Analysis

Top Keywords

gene expression
12
time points
12
gene
10
optimal transport
8
gene regulatory
8
regulatory networks
8
networks gene
8
gene velocity
8
expression data
8
gene regulation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!