Older adults with prediabetes or obesity (i.e., those at risk for diabetes) exhibit impaired structural brain networks. Given findings that resistance training (RT) can combat brain impairments in many populations, this study aimed to test the effects of this type of exercise on white matter microstructure in older adults at risk for diabetes. Seventeen community-dwelling older adults (mean age 67.8 ± 5.7, 52.9 % female) with prediabetes or obesity were randomly allocated to thrice weekly RT or balance and tone training (BAT; control group) for six months. Diffusion weighted imaging via a 3T scanner was used to assess changes in white matter parameters -fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) - over time. Participants in the RT group showed no significant changes in FA but had increased MD and RD in various regions related to cognitive function including the cingulate gyrus. Participants in the control group had both increased and decreased FA depending on the specific white matter tracts; increased FA was seen in areas related to motor coordination such as the middle cerebellar peduncle. The control group also exhibited decreased MD and RD in areas responsible for motor function (e.g., left anterior limb of the internal capsule). We conclude that both resistance and balance exercises result in changes in white matter microstructure albeit in divergent tracts that may be linked to the specific exercises performed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437870 | PMC |
http://dx.doi.org/10.1016/j.cccb.2024.100369 | DOI Listing |
Geroscience
January 2025
Laboratory of Imaging and Biomarkers in Cognitive Disorders, School of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil.
Mild cognitive impairment (MCI) refers to cognitive alterations with preservation of functionality. Individuals with this diagnosis have a higher risk of developing dementia. Non-pharmacological interventions, such as physical exercise, are beneficial for the cognition of this population.
View Article and Find Full Text PDFNeurol Sci
January 2025
Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
Objective: Corpus callosum (CC) damage is the most consistent and typical change in early Parkinson's disease (PD), and is associated with various PD symptoms. However, the precise relationship between CC subregions and specific PD symptoms have not been identified comprehensively. In this study, we investigated the association between specific CC subregion alterations and PD symptoms using diffusion-weighted imaging.
View Article and Find Full Text PDFEur J Pediatr
January 2025
Neonatology Department. Hospital Sant Joan de Déu, Center for Maternal Fetal and Neonatal Medicine. Neonatal Brain Group, Universitat de Barcelona. Hospital Clínic, Universitat de Barcelona. BCNatal - Barcelona, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
Purpose: Perinatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of neonatal brain injury. Therapeutic hypothermia (TH) is the standard treatment for term neonates, but its safety and efficacy in neonates < 36 weeks gestational age (GA) remains unclear. This case series aimed to evaluate the outcomes of preterm infants with HIE treated with TH.
View Article and Find Full Text PDFIUCrJ
January 2025
Department of Physics, University of Siegen, Siegen, Germany.
The topic of data storage, traceability, and data use and reuse in the years following experiments is becoming an important topic in Europe and across the world. Many scientific communities are striving to create open data by the FAIR principles. This is a requirement from the European Commission for EU-funded projects and experiments at EU-funded research infrastructures (RIs) and from many national funding agencies.
View Article and Find Full Text PDFNeurorehabil Neural Repair
January 2025
Department of Rehabilitation Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Background: Unilateral hemispheric stroke can impair the ipsilesional motor performance, which is crucial for attaining optimal functional outcomes poststroke. However, the specific brain structures contributing to ipsilesional motor performance impairment remain unclear.
Objective: To explore the link between ipsilesional motor performance and the microstructural integrity of relevant neural pathways.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!