Persistent luminescent nanoparticles (PLNPs) possess the capabilities to maintain extended longevity and robust emission even after the excitation has ceased. PLNPs have been widely used across various domains, including information displays, data encryption, biological imaging, and artistic decoration with sustained and vivid luminosity, providing boundless possibilities for a variety of innovative technology and artistic projects. This protocol focuses on an experimental procedure for the hydrothermal synthesis of PLNPs. The successful synthesis of enduring luminescent nanomaterials with Mn or Cr serving as a luminescent center in Zn2GeO4: Mn (ZGO: Mn) or ZnGa2O4: Cr highlights the universality of this synthetic method. On the other hand, the optical properties of ZGO: Mn can be changed by adjusting the pH of precursor solutions, demonstrating the tunability of the protocol. When charged with ultraviolet (UV) at a wavelength of 365 nm for 3 min and then stopped, PLNPs exhibit the remarkable capacity to generate afterglow efficiently and consistently, which makes them ideal for making two-dimensional rewritable displays and three-dimensional transparent, luminous artworks. This protocol outlined in this paper provides a feasible method for the synthesis of persistent luminescent nanoparticles for further illumination and imaging applications, opening up novel prospects for the fields of science and art.

Download full-text PDF

Source
http://dx.doi.org/10.3791/65956DOI Listing

Publication Analysis

Top Keywords

persistent luminescent
12
luminescent nanoparticles
12
synthesis persistent
8
rewritable displays
8
luminescent
5
synthesis
4
nanoparticles rewritable
4
displays illumination
4
illumination applications
4
applications persistent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!