Metal-encapsulated covalent organic frameworks (metal/COFs) represent an emerging paradigm in heterogeneous catalysis. However, the time-intensive (usually 4 or more days) and tedious multi-step synthesis of metal/COFs remains a significant stumbling block for their broad application. To address this challenge, we introduce a facile microwave-assisted in situ metal encapsulation strategy to cooperatively combine COF formation and in situ palladium(II) encapsulation in one step. With this unprecedented approach, we synthesize a diverse range of palladium(II)-encapsulated COFs (termed Mw-Pd/COF) in the air within just an hour. Notably, this strategy is scalable for large-scale production (~0.5 g). Leveraging the high crystallinity, porosity, and structural stability, one representative Mw-Pd/COF exhibits remarkable activity, functional group tolerance, and recyclability for the Suzuki-Miyaura coupling reaction at room temperature, surpassing most previously reported Pd(II)/COF catalysts with respect to catalytic performance, preparation time, and synthetic ease. This microwave-assisted in situ metal encapsulation strategy opens a facile and rapid avenue to construct metal/COF hybrids, which hold enormous potential in a multitude of applications including heterogeneous catalysis, sensing, and energy storage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202402513 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!