AI Article Synopsis

  • Fermi resonance is a phenomenon where two similar vibrational or electronic states mix, and this study explores this in atomically thin black phosphorus, a material that hasn't been thoroughly investigated in this context.
  • The study reveals that the Fermi resonance occurs through the mixing of a fundamental Raman mode and a related infrared mode, resulting in a characteristic doublet that changes with applied strain.
  • The findings provide new insights into how electrons interact with vibrations (or phonons) in black phosphorus and suggest a new way to control Fermi resonances in two-dimensional semiconductor materials.

Article Abstract

Fermi resonance is a phenomenon involving the hybridization of two coincidentally quasi-degenerate states that is observed in the vibrational or electronic spectra of molecules. Despite numerous examples in molecular systems, vibrational Fermi resonances in dispersive semiconducting systems remain largely unexplored due to the rarity of occurrence. Here we report a vibrational Fermi resonance in atomically thin black phosphorus. The Fermi resonance arises via anharmonic mixing of a fundamental Raman mode and a Davydov component of an infrared mode, leading to a doublet with mixed character. The extent of Fermi coupling can be modulated by the application of external biaxial strain. The consequences of Fermi hybridization are revealed by electronic resonance effects in the thickness-dependent and excitation-wavelength-dependent Raman spectrum, which is predicted by hybrid functional simulations including excitonic interactions. This work reveals new insight into electron-phonon coupling in black phosphorus and demonstrates a novel method for modulating Fermi resonances in 2D semiconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c03592DOI Listing

Publication Analysis

Top Keywords

fermi resonance
16
vibrational fermi
12
black phosphorus
12
resonance atomically
8
atomically thin
8
thin black
8
phosphorus fermi
8
fermi resonances
8
fermi
7
resonance
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!