Drug resistance is a critical impediment to efficient therapy of diffuse large B-cell lymphoma (DLBCL) patients. Recent studies have highlighted the association between ferroptosis and drug resistance that has been reported. Fatty acid synthase (FASN) is always related to a poor prognosis. In this study, we investigate the impact of FASN on drug resistance in DLBCL and explore its potential modulation of ferroptosis mechanisms. The clinical correlation of FASN mRNA expression was first analyzed to confirm the role of FASN on drug resistance in DLBCL based on the TCGA database. Next, the impact of FASN on ferroptosis was investigated in vitro and in vivo. Furthermore, a combination of RNA-seq, western blot, luciferase reporter, and ChIP experiments was employed to elucidate the underlying mechanism. The prognosis for patients with DLBCL was worse when FASN was highly expressed, particularly in those undergoing chemotherapy for Adriamycin (ADM). FASN promoted tumor growth and resistance of DLBCL to ADM, both in vitro and in vivo. It is noteworthy that this effect was achieved by inhibiting ferroptosis, since Fer-1 (a ferroptosis inhibitor) treatment significantly recovered the effects of silencing FASN on inhibiting ferroptosis, while Erastin (a ferroptosis inducer) treatment attenuated the impact of overexpressing FASN. Mechanistically, FASN activated NF-κB/STAT3 signaling pathway through phosphorylating the upstream IKKα and IκBα, and the activated STAT3 promoted GPX4 expression by directly binding to GPX4 promoter. FASN inhibits ferroptosis in DLBCL via NF-κB/STAT3/GPX4 signaling pathway, indicating its critical role in mediating ADM resistance of DLBCL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445901PMC
http://dx.doi.org/10.1080/15384047.2024.2403197DOI Listing

Publication Analysis

Top Keywords

drug resistance
16
resistance dlbcl
16
fasn
12
inhibiting ferroptosis
12
ferroptosis
9
adm resistance
8
diffuse large
8
large b-cell
8
b-cell lymphoma
8
impact fasn
8

Similar Publications

Background: Inadequate treatment responses, chemotherapy resistance, significant heterogeneity, and lengthy treatment durations create an urgent need for new pancreatic cancer therapies. This study aims to investigate the effectiveness of gemcitabine-loaded nanoparticles enclosed in an organo-metallic framework under ketogenic conditions in inhibiting the growth of MIA-PaCa-2 cells.

Methods: Gemcitabine was encapsulated in Metal-organic frameworks (MOFs) and its morphology and size distribution were examined using transmission electron microscopy (TEM) and Dynamic light scattering (DLS) with further characterization including FTIR analysis.

View Article and Find Full Text PDF

Background: Myelofibrosis (MF) is a clonal haematopoietic disease, with median overall survival for patients with primary MF only 6.5 years. The most frequent gene mutation found in patients is JAK2, causing constitutive activation of the kinase and activation of downstream signalling.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a common gastrointestinal cancer, and even though oxaliplatin chemotherapy is effective, there is a high likelihood of relapse, indicating the presence of oxaliplatin-resistant CRC. Therefore, it is crucial to comprehend the molecular mechanisms of oxaliplatin resistance and develop effective strategies to counter drug resistance. Numerous studies have demonstrated the close association between microRNAs (miRNAs) and drug resistance in CRC.

View Article and Find Full Text PDF

Background: Folpet is a nonspecific sulfonamide fungicide widely used to protect crops from mildew. However, the in vivo effects of folpet on glucose metabolism homeostasis, gut microbiota, and abundance of drug resistance genes remain unknown. The purpose of this study was to assess the effects of the pesticide, folpet, on glucose metabolism homeostasis, and folpet-induced changes in the intestinal microbiota and resistance genes in mice.

View Article and Find Full Text PDF

Colonization of Serendipita indica enhances resistance against Phoma arachidicola in Arachis hypogaea L.

World J Microbiol Biotechnol

January 2025

The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.

The endophytic fungus Serendipita indica (Si) could suppress Phoma arachidicola (Pa) and control peanut web blotch disease. The study evaluated its growth-promoting and disease-resistant effects in two peanut cultivars, Luhua11 and Baisha1016. In vitro experiments and microscopy analysis demonstrated that S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!