A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fingerprints of ordered self-assembled structures in the liquid phase of a hard-core, square-shoulder system. | LitMetric

Fingerprints of ordered self-assembled structures in the liquid phase of a hard-core, square-shoulder system.

J Chem Phys

Department of Mathematical Sciences and Interdisciplinary Centre for Mathematical Modelling, Loughborough University, Loughborough LE11 3TU, United Kingdom.

Published: September 2024

We investigate the phase ordering (pattern formation) of systems of two-dimensional core-shell particles using Monte Carlo (MC) computer simulations and classical density functional theory (DFT). The particles interact via a pair potential having a hard core and a repulsive square shoulder. Our simulations show that on cooling, the liquid state structure becomes increasingly characterized by long wavelength density modulations and on further cooling forms a variety of other phases, including clustered, striped, and other patterned phases. In DFT, the hard core part of the potential is treated using either fundamental measure theory or a simple local density approximation, whereas the soft shoulder is treated using the random phase approximation. The different DFTs are benchmarked using large-scale grand-canonical-MC and Gibbs-ensemble-MC simulations, demonstrating their predictive capabilities and shortcomings. We find that having the liquid state static structure factor S(k) for wavenumber k is sufficient to identify the Fourier modes governing both the liquid and solid phases. This allows us to identify from easier-to-obtain liquid state data the wavenumbers relevant to the periodic phases and to predict roughly where in the phase diagram these patterned phases arise.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0226954DOI Listing

Publication Analysis

Top Keywords

liquid state
12
hard core
8
patterned phases
8
liquid
5
phases
5
fingerprints ordered
4
ordered self-assembled
4
self-assembled structures
4
structures liquid
4
phase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!