Surfactant-free colloidal syntheses in aqueous media are attractive to develop nanomaterials relevant for various applications, e. g. catalysis or medicine. However, controlled green syntheses without surfactants of metal nanoparticles in aqueous media remain scarce. Here, room temperature syntheses of gold (Au) nanoparticles (NPs) that require only HAuCl, alkaline water and an alcohol, i. e. relatively benign chemicals and mild reaction conditions, are developed. The findings of a comprehensive multi-parameters screening performed in small volumes (<3 mL) over 1000+ experiments pave the way to greener high throughput screenings of large parametric spaces and lead to scalable (100 mL) synthetic strategies. A rational selection of the alcohol is proposed. The influence of lights with defined wavelengths (222-690 nm) is investigated. It is found that lights with lower wavelengths favor the formation of smaller 5 nm NPs. Different kinetics and formation pathways are observed for different alcohols and for lights with different wavelengths. The sensitivity to various experimental parameters increases with the alcohol used in the order glycerol
Download full-text PDF
Source
http://dx.doi.org/10.1002/cssc.202400763 DOI Listing Publication Analysis
Top Keywords
Food Res Int
February 2025
School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, College Road 1, Dongguan 523808, China.
Water-in-oil high internal phase emulsions (W/O-HIPEs) typically rely on large amounts of surfactants to disperse water droplets and usually use crystalline saturated triacylglycerides (TAGs) to enhance processing properties. However, these practices conflict with consumer demands for 'natural' ingredients. This study seeks to develop novel crystal fractions similar to saturated TAGs for the preparation of W/O-HIPEs as low-calorie fat mimetics, focusing on their mechanical and mouthfeel properties, which have received little attention thus far.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
The synthesis of poly(N-isopropyl acrylamide) (pNIPA)-based polymers via the surfactant-free precipitation polymerization (SFPP) method produced thermosensitive nanospheres with a range of distinctive physicochemical properties. Nano- and microparticles were generated using various initiators, significantly influencing particle characteristics, including the hydrodynamic diameter (D), which varied from 87.7 nm to 1618.
View Article and Find Full Text PDFRSC Adv
December 2024
Research Center for Water Resources and Interface Science, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 PR China +86-021-54340130 +86-021-54340130.
Surfactant-free microemulsions (SFMEs) composed of tetraethyl orthosilicate (TEOS), ethanol, and water have been successfully fabricated by visual titration and electrical conductivity methods. Three types of SFMEs, water in TEOS (W/O), bicontinuous (BC) and TEOS in water (O/W), were identified by dynamic light scattering and transmission electron microscopy with negative-staining methods. We demonstrated that there are significant differences in the properties of silica products synthesized with different types of SFMEs, and monodispersed silica colloidal spheres (MSCSs) can only be synthesized in the O/W type SFMEs.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Polymer Science & Engineering Department, 120 Governors Drive, University of Massachusetts, Amherst, MA, 01003. Electronic address:
While free radical polymerization methods are employed frequently to prepare sub-micron polymer particles, we hypothesized that surfactant-free emulsion polymerization (SFEP) methodology may prove beneficial for obtaining functional polymer particles by solution polymerization methods that preclude the need for conventional surfactants. To test the effectiveness of SFEP for the preparation of functional colloids, solution polymerization of several monomers, including propargyl acrylate (PA), styrene (Sty) and tert-butyl acrylate (t-BA), was performed over a range of monomer ratios and reaction scales. Electron microscopy and infrared spectroscopy were employed to evaluate the outcome of SFEP for particle size, shape, surface anisotropy, and chemical composition.
View Article and Find Full Text PDFLangmuir
October 2024
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
The introduction of surfactants to stabilize colloidal citrate-reduced gold nanoparticles (prevent aggregation) is usually used in surface-enhanced Raman scattering (SERS) applications. However, the surfactants have many drawbacks for SERS applications, such as increasing the SERS background and blocking surface active sites. Here, we develop a surfactant-free method to stabilize colloidal cit-AuNPs based on alkali regulation, and this method can prevent gold nanoparticle aggregation under different harsh treatments, including ligand modification, centrifugation-based washing/enrichment, and salt addition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!