Anode-free sodium metal batteries (AFSMBs) are regarded as the "ceiling" for current sodium-based batteries. However, their practical application is hindered by the unstable electrolyte and interfacial chemistry at the high-voltage cathode and anode-free side, especially under extreme temperature conditions. Here, an advanced electrolyte design strategy based on electrolyte solvation engineering is presented, which shapes a weakly solvating anion-stabilized (WSAS) electrolyte by balancing the interaction between the Na-solvent and Na-anion. The special interaction constructs rich contact ion pairs (CIPs) /aggregates (AGGs) clusters at the electrode/electrolyte interface during the dynamic solvation process which facilitates the formation of a uniform and stable interfacial layer, enabling highly stable cycling of 4.0 V-class layered oxide cathode from -40 °C to 60 °C and excellent reversibility of Na plating/stripping with an ultrahigh average CE of 99.89%. Ultimately, industrial multi-layer anode-free pouch cells using the WSAS electrolyte achieve 80% capacity remaining after 50 cycles and even deliver 74.3% capacity at -30 °C. This work takes a pivotal step for the further development of high-energy-density Na batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202410261 | DOI Listing |
RSC Adv
January 2025
Department of Chemical and Biomolecular Engineering, Case Western Reserve University Cleveland OH USA
Water-in-salt electrolytes provide an expanded electrochemical potential window, thus enabling a wide range of battery chemistries based on readily available salts and water. This study introduces a binary salt approach for achieving high K concentration with a tunable solvation sphere composed of acetate (Ac) and trifluoromethane sulfonate (OTf) anions, and water. Combining the hydrophilic low-cost potassium acetate with hydrophobic potassium trifluoromethane sulfonate salts, 36 molal liquid electrolyte, K(Ac)(OTf)·1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physics, Dalian University of Technology, Dalian 116024, P. R. China.
Gradient porous carbon has become a potential electrode material for energy storage devices, including the aqueous zinc-ion hybrid capacitor (ZIHC). Compared with the sufficient studies on the fabrication of ZIHCs with high electrochemical performance, there is still lack of in-depth understanding of the underlying mechanisms of gradient porous structure for energy storage, especially the synergistic effect of ultramicropores (<1 nm) and micropores (1-2 nm). Here, we report a design principle for the gradient porous carbon structure used for ZIHC based on the data-mining machine learning (ML) method.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tsinghua University, Tsinghua Shenzhen International Graduate School, CHINA.
The crosstalk of transition metal ions between the metal oxide cathode and Zn anode restricts the practical applications of aqueous zinc-ion batteries (ZIBs). Herein, we propose a decoupled electrolyte (DCE) consisting of a nonaqueous-phase (N-phase) anolyte and an aqueous-phase (A-phase) catholyte to prevent the crosstalk of Mn2+, thus extending the lifespan of MnO2-based ZIBs. Experimental measurements and theoretical modelling verify that trimethyl phosphate (TMP) not only synergistically works with NH4Cl in the N-phase anolyte to enable fast Zn2+ conduction while block Mn2+ diffusion toward anode, but also modifies the Zn2+ solvation structure to suppress the dendrite formation and corrosion on Zn anode.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Multiscale Computational Materials Facility & Materials Genome Institute, School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, PR China. Electronic address:
Localized high-concentration electrolytes (LHCEs) offer a new methodology to improve the functionality of conventional electrolytes. Understanding the impact of antisolvents on bulk electrolytes is critical to the construction of sophisticated LHCEs. However, the mechanism of how antisolvent modulates the electrochemical reactivity of the solvation structure in LHCEs remains unclear.
View Article and Find Full Text PDFACS Macro Lett
January 2025
Materials Department, University of California, Santa Barbara, California 93106, United States.
Solid polymer electrolytes (SPEs) with mechanical strength and reduced flammability may also enable next-generation Li batteries with higher energy densities. However, conventional SPEs have fundamental limitations in terms of Li conductivity. While an imidazole functionalized polymer (PMS-Im) has been previously shown to have ionic conductivity related to the imidazole-Li coordination, herein we demonstrate that quaternization of this polymer to form an analogous imidazolium functionalized polymer (PMS-Im) more efficiently solvates lithium salts and plasticizes the polymer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!