Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Sympathetic hyperactivity plays an important role in the initiation and maintenance of pulmonary hypertension. Carotid baroreceptor stimulation (CBS) is an effective autonomic neuromodulation therapy. We aim to investigate the effects of CBS on hypoxia-induced pulmonary hypertension and its underlying mechanisms.
Methods And Results: Rats were randomly assigned into 4 groups, including a Control-sham group (n=7), a Control-CBS group (n=7), a Hypoxia-sham group (n=10) and a Hypoxia-CBS group (n=10). Echocardiography, ECG, and hemodynamics examination were performed. Samples of blood, lung tissue, pulmonary arteries, and right ventricle were collected for the further analysis. In the in vivo study, CBS reduced wall thickness and muscularization degree in pulmonary arterioles, thereby improving pulmonary hemodynamics. Right ventricle hypertrophy, fibrosis and dysfunction were all improved. CBS rebalanced autonomic tone and reduced the density of sympathetic nerves around pulmonary artery trunks and bifurcations. RNA-seq analysis identified and periostin () as key genes involved in hypoxia-induced pulmonary hypertension, and CBS downregulated the mRNA expression of and in rat pulmonary arteries. In the in vitro study, norepinephrine was found to promote pulmonary artery smooth muscle cell proliferation while upregulating and expression. The proliferative effect was alleviated by silence or .
Conclusions: Our results showed that CBS could rebalance autonomic tone, inhibit pulmonary arterial remodeling, and improve pulmonary hemodynamics and right ventricle function, thus delaying hypoxia-induced pulmonary hypertension progression. There may be a reciprocal interaction between and that is responsible for the underlying mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681457 | PMC |
http://dx.doi.org/10.1161/JAHA.124.035868 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!