Propionic acid (PA), a low-molecular-weight organic acid, is crucial to plant life metabolism. However, the regulatory mechanism of PA-mediated drought resistance in wheat remains largely unknown. Herein, we reported on a regulatory network of PA-mediated drought resistance in wheat using integrated transcriptome and metabolomics analysis and verified genes associated with drought resistance. Compared to the water-treated group, the application of PA alleviated the damage of drought by increasing plant water content, antioxidant enzyme activities and decreasing the malondialdehyde level (MDA). Transcriptome and metabolomics analysis revealed that PA triggered upregulation of key genes and metabolites, including TaBCAT, TaALDH6A1, TaALDH7A1, TaCHI, TaFLS, chrysin, and galangin, which were involved in valine, leucine and isoleucine degradation or flavonoid biosynthesis, respectively. In addition, the expression of genes encoding auxin-related transcription factors (TFs) strikingly increased, such as auxin/indoleacetic acid (AUX/IAA) and auxin response factor (ARF). Moreover, PA activated abscisic acid (ABA) and indole-3-acetic acid (IAA) signalling pathways. Taken together, our findings suggest that PA promotes energy metabolism and antioxidant activities to confer wheat drought resistance by introducing comprehensive and systemic effects of valine, leucine and isoleucine degradation flavonoid biosynthesis. Furthermore, activated AUX/IAA and ARF TFs might serve vital roles in drought resistance via modulating IAA signalling. This study provides novel insights into PA-mediated crop resistance and the improvement of the agroecological environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.14551 | DOI Listing |
Front Plant Sci
December 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.
Xylem plasticity is important for trees to coordinate hydraulic efficiency and safety under changing soil water availability. However, the physiological and transcriptional regulations of cambium on xylem plasticity are not well understood. In this study, mulberry saplings of drought-resistant Wubu and drought-susceptible Zhongshen1 were subjected to moderate or severe drought stresses for 21 days and subsequently rewatered for 12 days.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
December 2024
Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India.
Alanine aminotransferase (AlaAT) is a crucial enzyme present in various isoforms. It is playing vital role in both humans and plants. This concise review focuses on the role of AlaAT in plants, particularly on preharvest sprouting, hypoxia, nitrogen use efficiency, abiotic and biotic stress tolerance.
View Article and Find Full Text PDFJ Genet Genomics
December 2024
Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Plant synthetic biology has emerged as a transformative field in agriculture, offering innovative solutions to enhance food security, provide resilience to climate change, and transition to sustainable farming practices. By integrating advanced genetic tools, computational modeling, and systems biology, researchers can precisely modify plant genomes to enhance traits such as yield, stress tolerance, and nutrient use efficiency. The ability to design plants with specific characteristics tailored to diverse environmental conditions and agricultural needs holds great potential to address global food security challenges.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
Drought, a major consequence of climate change, initiates molecular interactions among genes, proteins, and metabolites. a high-quality perennial grass species, exhibits robust drought resistance. However, the molecular mechanism underlying this resistance remaining largely unexplored.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, 102 Jejudaehak-ro, Jeju, 63243, Republic of Korea. Electronic address:
Soybeans are a critical crop that provides both protein and oil. In response to environmental stresses, mitogen-activated protein kinases (MPKs) play a key role in transmitting stress signals to the nucleus to initiate stress-responsive actions. Drought stress reduces plant development and productivity but the specific MPK responsible for drought stress responses has not been previously identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!