Tailoring the optoelectronic characteristics of colloidal quantum dots (QDs) by constructing a core/shell structure offers the potential to achieve high-performing solution-processed photoelectric conversion and information processing applications. In this work, the direct growth of wurtzite ternary AgInS (AIS) shell on eco-friendly AgGaS (AGS) core QDs is realized, giving rise to broadened visible light absorption, prolonged exciton lifetime and enhanced photoluminescence quantum yield (PLQY). Ultrafast transient absorption spectroscopy demonstrats that the photoinduced carrier separation and transfer kinetics of AGS QDs are significantly optimized following the AIS shell coating. As-synthesized environmentally benign AGS/AIS core/shell QDs are employed to fabricate photodetectors (PDs), showing a remarkable responsivity of 38.4 A W and a detectivity of 2.4 × 10 Jones under visible light illumination (405 nm). Moreover, the fabricated QDs-PDs exhibit superior image-sensing capability to record complex patterns with high resolution (160 × 160 pixels) under visible light illumination at 405 and 532 nm. The findings indicate that the direct growth of multinary narrow-band shell materials on eco-friendly QDs holds great promise to implement future "green", cost-effective and high-performance optoelectronic sensing/imaging systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202404261DOI Listing

Publication Analysis

Top Keywords

direct growth
12
visible light
12
quantum dots
8
ternary agins
8
ais shell
8
light illumination
8
illumination 405
8
qds
5
modulating eco-friendly
4
eco-friendly colloidal
4

Similar Publications

ConspectusA key challenge in modern chemistry research is to mimic life-like functions using simple molecular networks and the integration of such networks into the first functional artificial cell. Central to this endeavor is the development of signaling elements that can regulate the cell function in time and space by producing entities of code with specific information to induce downstream activity. Such artificial signaling motifs can emerge in nonequilibrium systems, exhibiting complex dynamic behavior like bistability, multistability, oscillations, and chaos.

View Article and Find Full Text PDF

Skin regeneration, repair, and the promotion of hair growth are intricate and dynamic processes essential for preserving the overall health, functionality, and appearance of both skin and hair. These processes involve a coordinated interplay of cellular activities and molecular signaling pathways that ensure the maintenance and restoration of skin integrity and hair vitality. Recent advancements in regenerative medicine have underscored the significant role of mesenchymal stem cell (MSC)-derived exosomes as key mediators in these processes.

View Article and Find Full Text PDF

BCL6 coordinates muscle mass homeostasis with nutritional states.

Proc Natl Acad Sci U S A

January 2025

Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037-1002.

Nutritional status is a determining factor for growth during development and homeostatic maintenance in adulthood. In the context of muscle, growth hormone (GH) coordinates growth with nutritional status; however, the detailed mechanisms remain to be fully elucidated. Here, we show that the transcriptional repressor B cell lymphoma 6 (BCL6) maintains muscle mass by sustaining GH action.

View Article and Find Full Text PDF

Targeting MAPK14 by Lobeline Upregulates Slurp1-Mediated Inhibition of Alternative Activation of TAM and Retards Colorectal Cancer Growth.

Adv Sci (Weinh)

January 2025

Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.

Colorectal cancer (CRC) usually creates an immunosuppressive microenvironment, thereby hindering immunotherapy response. Effective treatment options remain elusive. Using scRNA-seq analysis in a tumor-bearing murine model, it is found that lobeline, an alkaloid from the herbal medicine lobelia, promotes polarization of tumor-associated macrophages (TAMs) toward M1-like TAMs while inhibiting their polarization toward M2-like TAMs.

View Article and Find Full Text PDF

Thromboelastography (TEG) has evolved from a primarily surgical tool to a key instrument in broader medical fields, including personalized medicine for coagulopathies. The rationale for conducting this bibliometric analysis of TEG is to understand the evolution and current state of research in this critical field. By identifying publication trends, key contributors, and major developments, this study aims to provide valuable insights to guide future research and clinical practices in TEG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!