The surging demand for sustainable and efficacious approaches of enhancing the ground has resulted in the investigation of novel waste materials. This study investigates the utilization of Polyoxymethylene (POM) as a granular column to ameliorate the ability of soft clay soil to resist horizontal loads. The study introduces a new implementation of polyoxymethylene columns as ground improvement approach to tackle the complexities related to soft clay soils. The capability of polyoxymethylene columns was analyzed through a sequence of laboratory experiments, containing engineering characteristic tests, unconfined compressive strength (UCS) tests, and consolidated isotropic undrained (CIU) triaxial tests. The effects of the number of columns, column diameter, column depth, substitute area ratio, depth penetration ratio, column aspect ratio, volume infusion ratio, and confining pressures, were evaluated to analyze the behavior of individual and clustered encapsulated polyoxymethylene columns. The findings verified a notable development in the ability of soft clay soil, when strengthened with polyoxymethylene columns, to oppose the lateral loads and maintain overall stability. Additionally, a regression analysis was implemented to establish a prediction model that estimates the increase in shear strength of POM columns based on different column dimensions. This model is a practical tool for evaluating the performance of reinforced soft clay soils in large-scale projects. This study not only accentuates the mechanical benefits of polyoxymethylene but also accentuates its environmental benefits, prescribing for the implementation of recyclable materials in ground renovation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439930 | PMC |
http://dx.doi.org/10.1038/s41598-024-73224-y | DOI Listing |
Soft Matter
January 2025
Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India.
The adsorption of charged clay nanoplatelets plays an important role in stabilizing emulsions by forming a barrier around the emulsion droplets and preventing coalescence. In this work, the adsorption of charged clay nanoplatelets on a preformed Latex microsphere in an aqueous medium is investigated at high temporal resolution using optical tweezer-based single-colloid electrophoresis. Above a critical clay concentration, charged clay nanoplatelets in an aqueous medium self-assemble gradually to form gel-like networks that become denser with increasing medium salinity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
PG & Research Department of Physics, AVVM Sri Pushpam College (Autonomous), [Affiliated to Bharathidasan University, Tiruchirappalli], Poondi, Thanjavur 613503, Tamil Nadu, India. Electronic address:
Development of bio-supported photocatalysts has become a pressing need in the field of environmental remediation. This work reports the synthesis of bio-enzyme (from banana peels) inherited (ZnO/g-CN) nanocomposite by simple soft chemical method and its photocatalytic degradation ability against the mixed dye (Methylene blue (MB) + Rhodamine-B (RhB)) under UV irradiation. Synthesized nanoparticles were characterized using experimental techniques XRD, FESEM, TEM, EDAX, XPS, UV-vis-NIR spectroscopy and FTIR.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Civil Engineering, Delhi Technological University, New Delhi, 110089, India.
Soil reinforcement is one of the techniques used to enhance the engineer characteristics of the soil. Various techniques can be employed to stabilise problematic soils, such as soft clay. These include the utilisation of portland cement, lime, fly ash, ground freezing, jet grouting, prefabricated vertical drains, and thermal approaches.
View Article and Find Full Text PDFCommun Earth Environ
January 2025
Institute of Earth Sciences, University of Lausanne, Géopolis, Lausanne, CH-1015 Switzerland.
Fossils preserving soft tissues and lightly biomineralized structures are essential for the reconstruction of past ecosystems and their evolution. Understanding fossilization processes, including decay and mineralisation, is crucial for accurately interpreting ancient morphologies. Here we investigate the decay of marine and freshwater shrimps deposited on the surface of three different clay beds.
View Article and Find Full Text PDFTo investigate the influence of cations on the microstructural characteristics of electrochemical reinforcement in soft clay, a study was conducted using three different cationic salt solutions-NaCl, CaCl₂, and FeCl₃-for grouting treatment. Four sets of indoor experiments were performed to examine the reinforcement mechanism of the electrochemical method. The findings indicate that increasing the valence of injected cations significantly affects the electrochemical reinforcement effect and the soil's microstructural properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!