Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Organic polymers are considered promising candidates for next-generation green electrode materials in lithium-ion batteries (LIBs). However, achieving long cycling stability and capacity retention at high current densities remains a significant challenge due to weak structural stability and low conductivity. In this study, we report the synthesis of two novel polyimide covalent organic frameworks (PI-COFs), COF-JLU85 and COF-JLU86, by combining truxenone-based triamine and linear acid anhydride through polymerization. These PI-COFs feature layers with pore channels embedded with 18 carbonyl groups, facilitating rapid lithium-ion diffusion and enhancing structural stability under high current densities. Compared to previously reported organic polymer materials, COF-JLU86 demonstrates the excellent performance at high current densities, with an impressive specific capacity of 1161.1 mA h g at 0.1 A g, and outstanding cycling stability, retaining 1289.8 mA h g at 2 A g after 1500 cycles and 401.1 mA h g at 15 A g after 10000 cycles. Additionally, in situ infrared spectroscopy and density functional theory (DFT) calculations provide mechanistic insights, revealing that the high concentration of carbonyl redox-active sites and the optimized electronic structure contribute to the excellent electrochemical performance. These results highlight the potential of PI-COFs as high-performance organic electrode materials for LIBs, offering a promising solution to the challenges of long-term stability and capacity retention at high current densities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202412452 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!