New developments in the diagnosis and management of motor neuron disease.

Br Med Bull

Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 285 Glossop Road, Sheffield S10 2HQ, United Kingdom.

Published: December 2024

AI Article Synopsis

  • Motor neuron disease (MND) is a serious neurodegenerative condition that leads to muscle weakness and requires comprehensive management strategies involving medications and supportive care.
  • Current evidence supports treatments like riluzole and new therapies like Tofersen for specific MND types, while some approved drugs lack sufficient evidence for use in certain regions.
  • Emerging research highlights potential biomarkers, novel clinical trials, and the need for further investigation into environmental and genetic factors contributing to MND.

Article Abstract

Introduction: Motor neuron disease (MND) is a devastating neurodegenerative disease characterized by progressive muscle weakness.

Sources Of Data: PubMed, MEDLINE, and Cochrane databases were searched for articles to March 2024. Searches involved the terms 'motor neuron disease' or 'amyotrophic lateral sclerosis' and 'epidemiology', 'diagnosis', 'clinical', 'genetic', 'management', 'treatment', or 'trial'.

Areas Of Agreement: Evidence-based management involves riluzole, multidisciplinary care, provision of noninvasive ventilation and gastrostomy, and symptomatic treatments. Tofersen should be offered to treat SOD1-MND.

Areas Of Controversy: Edaravone and Relyvrio are approved treatments in the USA, but insufficient evidence was found to support approval in the UK and Europe.

Growing Points: The discovery of neurofilaments as MND biomarkers, growth of platform trials and development of novel therapies provide optimism for more powerful neuroprotective therapies.

Areas Timely For Developing Research: Further work should focus on the elucidation of environmental causes of MND, gene-environment interactions, and advanced cellular models of disease.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bmb/ldae010DOI Listing

Publication Analysis

Top Keywords

motor neuron
8
neuron disease
8
developments diagnosis
4
diagnosis management
4
management motor
4
disease
4
disease introduction
4
introduction motor
4
disease mnd
4
mnd devastating
4

Similar Publications

Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.

View Article and Find Full Text PDF

Clinical features of FOSMN syndrome in Korea: A comparative analysis with bulbar-onset amyotrophic lateral sclerosis.

J Neurol Sci

December 2024

Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea. Electronic address:

Facial onset sensory and motor neuronopathy (FOSMN) syndrome is a rare neurodegenerative disorder initially characterized by facial sensory deficits, which later progress to motor deficits in a rostral-caudal distribution. This study investigated the prevalence, clinical features, and prognosis of FOSMN syndrome and compared these aspects with those of bulbar-onset amyotrophic lateral sclerosis (ALS) within a single institutional cohort of motor neuron diseases. We identified four patients with FOSMN syndrome who had been misclassified as having bulbar-onset ALS, representing approximately 2 % of such ALS cases.

View Article and Find Full Text PDF

Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease caused by mutations in the SACS gene. The first two mutations were identified in French Canadian populations 20 years ago. The disease is now known as one of the most frequent recessive ataxias worldwide.

View Article and Find Full Text PDF

Vimentin Inhibits Neuronal Apoptosis After Spinal Cord Injury by Enhancing Autophagy.

CNS Neurosci Ther

January 2025

Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, the First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China.

Aims: Neuron death is caused primarily by apoptosis after spinal cord injury (SCI). Autophagy, as a cellular response, can maintain cellular homeostasis to reduce apoptosis. We aimed to investigate the effect and the mechanism of vimentin knockdown on autophagy and neural recovery after SCI.

View Article and Find Full Text PDF

The switch from oxidative phosphorylation to glycolysis is crucial for microglial activation. Recent studies highlight that histone lactylation promotes macrophage homeostatic gene expression via transcriptional regulation, but its role in microglia activation in Parkinson's disease (PD) remains unclear. Here, we demonstrated that inhibiting glycolysis with 2-deoxy-D-glucose alleviates microgliosis, neuroinflammation and dopaminergic neurons damage by reducing lactate accumulation in PD mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!