PER: and polyfluoroalkyl substances have gained increased attention due to their persistence, ubiquitous presence in the environment, and toxicity. We hypothesised that the formation of non-extractable residues [NER] occurs in soils and contributes to the overall persistence of these priority pollutants, and that NER formation is controlled by temperature. To test these hypotheses, we used C-labelled perfluorooctanoic acid [PFOA] as target compound, added it to two arable soils (Cambisol, Luvisol), and incubated them at 10 °C and 20 °C in the dark. To support potential co-metabolic decomposition, some samples were additionally fed with glucose to enhance microbial activity. The PFOA residues were then sequentially extracted using 0.01 M CaCl, followed by accelerated solvent extraction (ASE) with methanol or methanol/acetic acid after 0, 1, 3, 9, 30, 62, and 90 days of incubation. In addition, we monitored the release of C into the gas phase as well as [C]-PFOA-NER after dry combustion and liquid scintillation counting. After 90 days, we found that the [C]-PFOA content declined in the extraction order of CaCl ((bio)available fraction) > ASE (residual fraction) > NER > gas fraction), with most rapid changes occurring in the first 9 days of incubation. NER formation was different in the two soils and reached 5-9% of the applied amount in the Cambisol and Luvisol, respectively. Noteworthy the proportion of C-PFOA in the (bio)available fraction remained relatively stable over time at 56-62% of the applied amount, indicating the reversible transfer into this fraction from a bi-exponentially declining residual (ASE) pool. These dissipation patterns were neither influenced by temperature nor by the addition of glucose. We conclude that NER exist for PFOA, but that the majority of PFOA remains in (bio)available form, thus maintaining toxicity and mobility in soil for prolonged periods of time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.143422 | DOI Listing |
Nat Commun
October 2024
Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
Sci Total Environ
December 2024
Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America.
This study explores the feasibility of identifying bound compounds in non-extractable residues (NERs) of pesticides in soil by 4-pool kinetic analysis. The 4-pools refer to parent compound, metabolites, NERs, and CO in C-labeled pesticide soil degradation studies. We discovered the following two characteristic 4-pool kinetic behaviors of formation of NERs: (1) if parent compound is bound as NERs, the metabolites (m(t) in % applied radioactivity (AR)) kinetically drive the evolution of CO only; and (2) if a metabolite (x) in a sequential degradation pathway is bound as NERs, m(t) is split into m(t) and m(t) at the metabolite (x) that is bound as NERs, which kinetically drive the formation of NERs and evolution of CO respectively.
View Article and Find Full Text PDFChemosphere
October 2024
Institute of Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich GmbH, 152425 Jülich, Germany; Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology, Nussallee 13, University of Bonn, 53115 Bonn, Germany. Electronic address:
PER: and polyfluoroalkyl substances have gained increased attention due to their persistence, ubiquitous presence in the environment, and toxicity. We hypothesised that the formation of non-extractable residues [NER] occurs in soils and contributes to the overall persistence of these priority pollutants, and that NER formation is controlled by temperature. To test these hypotheses, we used C-labelled perfluorooctanoic acid [PFOA] as target compound, added it to two arable soils (Cambisol, Luvisol), and incubated them at 10 °C and 20 °C in the dark.
View Article and Find Full Text PDFAntioxidants (Basel)
September 2024
Center for Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, Campus Aeropuerto Carretera a Chichimequillas S/N, Ejido Bolaños, Querétaro 76140, Querétaro, Mexico.
Chemosphere
September 2024
Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, Strasbourg, F-67084, France. Electronic address:
The quantification of pesticide dissipation in agricultural soil is challenging. In this study, we investigated atrazine biodegradation in both liquid and soil experiments bioaugmented with distinct atrazine-degrading bacterial isolates. This was achieved by combining C-mineralisation assays and compound-specific isotope analysis of atrazine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!