AI Article Synopsis

  • West Nile Virus (WNV) primarily infects birds but can spill over to humans, leading to varying clinical symptoms, including severe neuroinvasive diseases, with mosquitoes being the main vector.
  • The extrinsic incubation period (EIP), or the time it takes for infected mosquitoes to spread the virus, varies with temperature, which significantly affects WNV transmission dynamics.
  • New analysis using Bayesian models shows that higher temperatures reduce the EIP significantly, with the fastest spread observed at 32ºC, and identifies a competitive advantage of the WN02 strain over NY99, particularly in cooler conditions.

Article Abstract

West Nile Virus (WNV) is a mosquito-borne pathogen that primarily infects birds. Infections can spillover to humans and cause a spectrum of clinical symptoms, including WNV neuroinvasive disease. The extrinsic incubation period (EIP) is the time taken for a mosquito to become infectious following the ingestion of an infected blood meal. Characterising how the EIP varies with temperature is an essential part of predicting the impact and transmission dynamics of WNV. We re-analyse existing experimental data using Bayesian time delay models, allowing us to account for variation in how quickly individual mosquitoes developed disseminated WNV infections. In these experiments, cohorts of Culex pipiens mosquitoes were infected with WNV and kept under different temperature conditions, being checked for disseminated infection at defined timepoints. We find that EIPs are best described with a Weibull distribution and become shorter log-linearly with temperature. Under 18°C, less than 1% of infected Cx. pipiens had a disseminated infection after 5 days, compared to 9.73% (95% CrI: 7.97 to 11.54) at 25°C and 42.20% (95% CrI: 38.32 to 46.60) at 30°C. In the hottest experimental temperature treatment (32°C), the EIP was estimated at 3.78 days (CrI: 3.42 to 4.15) compared to over 100 days in the coolest treatment (15°C). The variance of EIPs was found to be much larger at lower temperatures than higher temperatures, highlighting the importance of characterising the time delay distribution associated with the EIP. We additionally demonstrate a competitive advantage of WNV strain WN02 over NY99, where the former infects mosquitoes more quickly at colder temperatures than the latter. This research contributes crucial parameters to the WNV literature, providing essential insights for modellers and those planning interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinf.2024.106296DOI Listing

Publication Analysis

Top Keywords

time delay
12
extrinsic incubation
8
incubation period
8
west nile
8
nile virus
8
bayesian time
8
delay models
8
disseminated infection
8
95% cri
8
wnv
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!