Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Malate, a precursor in the ruminal propionate production pathway, competes with methanogenesis for metabolic hydrogen, offering a way to reduce ruminal methane (CH) production in ruminants. However, cost considerations hinder widespread use of malate in ruminant diets. An alternative approach involves use of transient malate levels generated during seed germination via the glyoxylate cycle. This study investigated the methane-mitigating potential of malate-containing hydroponic fodder. Fodder samples with peak malate concentrations from alfalfa, forage pea, Italian ryegrass, rye, soybean, triticale, and wheat during germination were subjected to in vitro rumen fermentation using the Hohenheim gas test. The basal diet of in vitro fermentation comprised 40% grass silage, 40% maize silage, 15% hay, and 5% concentrate on a DM basis, with nutritional characteristics including 42.1% NDF, 25.0% ADF, 14.0% starch, 12.7% CP, and 3.5% ether extract, on a DM basis. Experimental treatments were fodder inclusion involving replacing 20% of the basal diet (20R) and, additionally, 100% replacement of the silages with alfalfa d 10 and rye d 9 (SR), the 2 high-malate fodders. Reductions in CH production were observed with soybean (20R, 6.7% reduction), alfalfa (20R, 6.6% reduction), and increased with rye (20R, 6.3% increase). In the setup replacing silages with high-malate fodders (SR), alfalfa decreased CH production (17.7%) but increased ammonia (174%), whereas rye increased CH production (35.8%). Organic matter digestibility increased with SR rye (12.6%). Marginal effects of dietary variables were analyzed in a generalized additive model. A negative relationship between dietary malate content and CH production was observed, whereas dietary NDF and starch content were positively correlated with CH production. In conclusion, malate within the hydroponic fodder could potentially reduce CH emissions in ruminants. However, achieving sufficient efficacy requires high malate content. Additionally, use of hydroponic fodder may increase the risk of nitrogen emissions. Animal studies are required for further investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2024-25274 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!