Summary: Familial renal glucosuria (FRG) is a rare renal tubular disorder characterized by increased urinary glucose excretion despite normoglycemia. It is most commonly caused by pathogenic variants in the solute carrier family V member 2 (SLC5A2) gene. This gene encodes the sodium-glucose cotransporter 2, crucial for glucose reabsorption. We report the case of a 44-year-old male referred to the endocrinology outpatient clinic for unexplained glucosuria despite well-controlled diabetes mellitus with metformin and gliclazide therapy. His main complaints were nocturia and an unintentional 5 kg weight loss in 1 year. A 24-h urinary collection revealed overt glucosuria (23.3 g/1.73 m2/24 h), generalized aminoaciduria, and increased uric acid excretion (fractional excretion: 6.4%). Whole-exome sequencing revealed a novel heterozygous c.469-1G>A likely pathogenic variant in the SLC5A2 gene. Specific analysis of the maturity-onset diabetes of the young type (MODY) gene panel showed no pathogenic variants in the hepatocyte nuclear factor-1A (HNF-1A; MODY3) nor in other MODY-associated genes. We assume that the association of glucosuria, aminoaciduria, and increased uric acid excretion can be explained by the combination of diabetes and the likely pathogenic SLC5A2 variant in this patient. In conclusion, we describe a well-controlled diabetic patient with FRG, associated with a novel heterozygous c.469-1G>A likely pathogenic variant in the SLC5A2 gene.
Learning Points: The diagnosis of a renal tubular disorder should be considered in patients with unexplained glucosuria and diabetes mellitus, especially if the latter is well controlled. FRG usually presents with glucosuria but may be associated with generalized aminoaciduria and hyperuricosuria. Genetic analysis should be considered in patients with young-onset diabetes and glucosuria, particularly with a positive family history.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466272 | PMC |
http://dx.doi.org/10.1530/EDM-24-0065 | DOI Listing |
CRISPR J
January 2025
Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, China.
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 system has revolutionized targeted mutagenesis, but screening for mutations in large sample pools can be time-consuming and costly. We present an efficient and cost-effective polymerase chain reaction (PCR)-based strategy for identifying edited mutants in the T generation. Unlike previous methods, our approach addresses the challenges of large progeny populations by using T generation sequencing results for genotype prediction.
View Article and Find Full Text PDFOphthalmic Genet
January 2025
Departments of Medical Genetics and Ophthalmology & Visual Sciences, University of Alberta, Edmonton, Alberta, Canada.
Background: Pathogenic variants in , a kinesin family gene, cause MCLMR and FEVR. In MCLMR, chorioretinal atrophy is present in the majority of cases and can be a helpful diagnostic sign.
Cases: We present the cases of two patients with chorioretinal atrophy and microcephaly who carry novel mutations.
RNA-sequencing has improved the diagnostic yield of individuals with rare diseases. Current analyses predominantly focus on identifying outliers in single genes that can be attributed to cis-acting variants within or near that gene. This approach overlooks causal variants with trans-acting effects on splicing transcriptome-wide, such as variants impacting spliceosome function.
View Article and Find Full Text PDFMol Genet Metab Rep
March 2025
The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, 6997801 Tel Aviv, Israel.
Dihydrolipoamide dehydrogenase (DLD) deficiency is an autosomal recessive disorder characterized by a functional disruption in several critical mitochondrial enzyme complexes, including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase. Despite DLD's pivotal role in cellular energy metabolism, detailed molecular and metabolic consequences of DLD deficiency (DLDD) remain poorly understood. This study represents the first in-depth multi-omics analysis, specifically metabolomic and transcriptomic, of fibroblasts derived from a DLD-deficient patient compound heterozygous for a common Ashkenazi Jewish variant (c.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Faculty of Medicine of TUD Dresden University of Technology, Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, Dresden, Germany.
Autosomal dominant CDK13-related disease is characterized by congenital heart defects, dysmorphic facial features, and intellectual developmental disorder (CHDFIDD). Heterozygous pathogenic variants, particularly missense variants in the kinase domain, have previously been described as disease causing. Using the determination of a methylation pattern and comparison with an established episignature, we reveal the first hypomorphic variant in the kinase domain of CDK13, leading to a never before described autosomal recessive form of CHDFIDD in a boy with characteristic features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!