Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
ELNES/XANES spectra can be observed using TEM or synchrotron radiation and can elucidate the unoccupied state electronic structures of an excited states. The computation of their features is usually demanding substantial computational resources due to the requisite structure optimization and electronic structure calculations. Herein, we leverage a machine learning technique alongside an atomic-coordinate-independent descriptor, SMILES, to yield the ELNES/XANES spectra, directly, with heightened precision. Moreover, our approach extends to obtain ground state electronic structure, namely PDOS at both occupied and unoccupied ground states, underscoring its viability for a ground-state spectroscopy. Our study revealed that incorporation of long-SMILES molecules into the training dataset enhances prediction accuracy for such molecular structures. This study's direct derivation of spectroscopy from SMILES strings holds promise for expediting spectroscopic inquiries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micron.2024.103723 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!