In paddy soils, arsenic (As) stress influences nitrogen (N) transformation while application of N fertilizers during rice cropping affects As transformation. However, specific interactive effects between As and N in flooded paddy soils on As mobility and N availability were unclear. Here, we examined N and As dynamics in flooded paddy soils treated with four As levels (0, 30, 80 and 150 mg kg) and three urea additions (0, 4 and 8 mmol N kg). Arsenic contamination inhibited diazotrophs (nifH) and fungi but promoted AOA and denitrification genes (narG, nirK, nirS), decreasing dissolved organic N, NH-N and NO-N. Besides, urea application stimulated As- and Fe-reducing bacteria (arrA and Geo) coupled with anammox. On Day 28, the addition of 8 mmol N kg increased total As concentrations in solutions of soils treated with 30 and 80 mg As kg by 2.4 and 1.8 times compared with the nil-N control. In contrast, at 150 mg As kg, it decreased the total As concentration in soil solution by 63 % through facilitating As(III) oxidation coupled with NO-N reduction. These results indicate that As contamination decreases N availability, but urea application affects As mobility, depending on As contamination level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.135981 | DOI Listing |
J Hazard Mater
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China. Electronic address:
Hydroxyl radical (OH) plays a critical role in accelerating organic contaminant attenuation during water-table decline in paddy soil, but the impacts of widely applied agricultural amendments (e.g., organic manure, rice straw, and biochar) on these processes have been rarely explored.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:
In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH) and nitrous oxide (NO) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha N fertilizer input.
View Article and Find Full Text PDFMicrobiome
January 2025
State Key Laboratory of Nutrient Use and Management, Key Laboratory of Plant‑Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
J Environ Manage
January 2025
Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China. Electronic address:
As an accelerated electron transfer device, the influence of microbial electrochemical snorkel (MES) on soil greenhouse gas production remains unclear. Electron transport is the key to methane production and denitrification. We found that the NO amount of the MES treatment was comparable to the control however the cumulative CO and CH emissions were reduced by 50% and 41%, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!