The process of counter-current chromatography (CCC) separation for natural products typically necessitates the use of multiple solvent systems to accommodate constituents with a wide range of polarities. However, the incompatibility between these different solvent systems often results in unsuccessful online 2D successive separations. In this study, a 2D CCC system was developed, featuring an interface for online-storage, dilution, and mixing. It facilitated the implementation of online 2D CCC using different solvent systems. The method was subsequently applied for the preparative isolation of flavonoids from Scutellaria baicalensis Georgi roots. For D CCC, n-heptane-ethyl acetate-methanol-water (HepEMWat, 5:5:4:6, v/v) was utilized, while for D CCC, ethyl acetate-n-butanol-water (EBuWat, 0:5:5, v/v) was employed. The eluent with low resolution in D CCC was stored online, diluted three times using the lower phase of EBuWat (0:5:5, v/v), and subsequently transferred into D CCC for further isolation utilizing the same EBuWat (0:5:5, v/v) system. As results, six lipophilic compounds were isolated in D CCC in a normal mode, while two major hydrophilic constituents were isolated in a pH-peak-focusing mode in D CCC. Additionally, two additional compounds were purified through subsequent semi-preparative HPLC separation in order to resolve co-elution in D CCC. The developed 2D CCC system with a multifunctional interface demonstrated to be an exceptionally efficient and promising approach for the high-throughput purification of complex natural products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2024.124325 | DOI Listing |
J Occup Health
January 2025
Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.
Bromopropane was introduced commercially as an alternative to ozone-depleting and global warming solvents. The identification of 1-bromopropane neurotoxicity in animal experiments was followed by reports of human cases of 1-bromopropane toxicity. In humans, the most common clinical features of 1-bromopropane neurotoxicity are decreased sensation, weakness in extremities, and walking difficulties.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Key Laboratory of Green Chemistry and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
DO and HO, as two important solvents with very similar properties, play a pivotal role in nuclear industrial production, life and scientific research. Unfortunately, DO and HO are highly susceptible to contamination by each other, so effective qualitative and quantitative analyses of both are necessary. This review comprehensively discusses the progress in optical sensing for the detection of a trace amount of HO in heavy water or , mainly including five types of analytical systems: inorganic nanocrystals, carbon-based nanomaterials, lanthanide complexes, organic polymers, and organic small molecules.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
In an effort to improve safety and cycling stability of liquid electrolytes, the use of dicarbonates has been explored. In this study, four dicarbonate structures with varying end groups and spacers are investigated. The effect of these structural differences on the physical and ion transport properties is elucidated, showing that the end group has a significant influence on ion transport.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Manipal University Jaipur VPO-Dehmi-Kalan, Off Jaipur Ajmer Express Way Jaipur Rajasthan 303007 India
Triazole, a nitrogen-containing five-membered heterocycle with two isomeric forms, 1,2,3-triazole and 1,2,4-triazole, has proven to be a valuable component in the pharmaceutical domain. Owing to its widespread utility in drug development, pharmaceutical and medicinal chemistry, several synthetic methods have been explored, such as different catalytic systems, solvents, and heating methodologies in recent years. However, some methods were associated with several limitations, such as harsh reaction conditions, high temperatures, low atom economy, and long reaction times.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
Photothermal conversion can promote plastic depolymerization (chemical recycling to a monomer) through light-to-heat conversion. The highly localized temperature gradient near the photothermal agent surface allows selective heating with spatial control not observed with bulk pyrolysis. However, identifying and incorporating practical photothermal agents into plastics for end-of-life depolymerization have not been realized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!