This study investigates how gamma rays, neutrons, and electrons interact with five commonly found indoor plants: Spathiphyllum wallisii (SW), Ficus elastica (FE), Dieffenbachia camilla (DC), Schefflera arboricola (SA), and Ficus benjamina (FB). Utilizing experimental measurements (with HPGe detector), Monte Carlo simulations (GEANT4 and FLUKA), and theoretical calculations (ESTAR and WinXCOM), some radiation interaction parameters for gamma rays, fast neutrons, thermal neutrons, and electrons were determined. Secondary particle generation was also analyzed to provide a comprehensive assessment. The determined linear attenuation coefficients with the help of the WinXCOM are 0.1376, 0.1662, 0.1385, 0.1651 and 0.1698 cm for SW, FE, DC, SA and FB, respectively. The calculated total macroscopic cross sections for indoor plants in the same sample order are 2.0290, 2.0350, 2.0285, 2.0363 and 2.0362 cm. Among the investigated plants, FB exhibited the highest gamma ray interaction, while SA and FB showed superior interaction against fast neutrons compared to SW and DC. The findings reveal significant variations in interaction effectiveness and secondary radiation production across these plants, offering valuable insights for radiation safety and environmental health evaluations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apradiso.2024.111534 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!