The production and separation of Tb with high specific activity at the University of Utah.

Appl Radiat Isot

Nuclear Engineering Program, Department of Civil and Environmental Engineering, University of Utah, 110 Central Campus Dr. Rm 2000, Salt Lake City, UT, 84112, United States. Electronic address:

Published: December 2024

Targeted radiotherapy (TRT) is an increasingly prominent area of research in nuclear medicine, particularly in the context of treating cancerous tumors. One radionuclide of considerable interest for TRT is terbium-161 (t = 6.95 days), which undergoes beta emission and shares similar decay properties as Lu (FDA-approved as LUTATHERA® and PLUVICTO®). Besides beta emission, Tb also emits a significant number of conversion and Auger electrons further enhancing its therapeutic potential. Terbium-161 can be produced using nuclear reactors through an indirect neutron capture reaction, G64160dn,γG64161d→3.66min,βT65161b, from Gd targets. However, a key challenge in utilizing Tb for TRT lies in effectively separating target and product materials to attain high specific activity for radiolabeling. Here, we detail the production of no-carrier added Tb using low flux research reactors (mean thermal (<0.625 eV) neutron flux: 1.356×10n∙cm∙s) like the University of Utah TRIGA Reactor, using enriched GdO targets (1.5 ± 0.3 μCi of Tb per mg of Gd target per hour of irradiation). We also developed a separation technique based on cation exchange and extraction chromatography, suitable for mCi level irradiations with targets exceeding 200 mg. In a simulated full-scale irradiation, Tb was successfully isolated from large mass targets using cation exchange (AG 50W-X8, with 2-hydroxyisobutyric acid at 70 mM, pH 4.75) and extraction chromatography (LN Resin, 0.5-0.75 M HNO) methods. This resulted in high apparent molar activities of [Tb]Tb-DOTA (113 ± 3 MBq/nmol), demonstrating high purity Tb relevant for potential future preclinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2024.111530DOI Listing

Publication Analysis

Top Keywords

high specific
8
specific activity
8
beta emission
8
production separation
4
separation high
4
activity university
4
university utah
4
utah targeted
4
targeted radiotherapy
4
radiotherapy trt
4

Similar Publications

Pulmonary hypertension (PH) increases the mortality of preterm infants with bronchopulmonary dysplasia (BPD). There are no curative therapies for this disease. Lung endothelial carnitine palmitoyltransferase 1a (Cpt1a), the rate-limiting enzyme of the carnitine shuttle system, is reduced in a rodent model of BPD.

View Article and Find Full Text PDF
Article Synopsis
  • The negative symptoms of schizophrenia, like lack of emotion and motivation, are hard to treat and significantly impact daily functioning.
  • This review highlights current research on treatment options for these symptoms, categorizing them into different types and evaluating various assessment scales.
  • Although no treatments are conclusively proven as the best for these symptoms, some off-label and investigational medications show promise, including cariprazine and memantine, and further research is needed to explore new therapeutic possibilities.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how changes in the Ki67 biomarker before and after neoadjuvant chemotherapy (NACT) affect survival in patients with triple-negative breast cancer (TNBC).
  • Among 1,777 TNBC patients analyzed, most showed a decrease in tumor size and Ki67 levels after NACT, though many had no change or experienced treatment discontinuation.
  • Patients with unchanged Ki67 had significantly worse overall and disease-specific survival compared to those with decreased Ki67, emphasizing the need for personalized treatment strategies based on ongoing monitoring of this biomarker.
View Article and Find Full Text PDF

The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the associations between traits and microbial composition is critical for microbiome research, but machine learning models often struggle due to the data's high-dimensional, compositional, and imbalanced nature.
  • To tackle these challenges, a new data augmentation method called PhyloMix has been developed, which uses phylogenetic relationships to generate synthetic microbial samples that enhance model performance.
  • PhyloMix significantly outperforms other data augmentation techniques and is effective in both supervised learning and contrastive representation learning, demonstrating its broad applicability in microbiome studies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!