Development of feline infectious peritonitis diagnosis system by using CatBoost algorithm.

Comput Biol Chem

Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan; Advanced Institute of Manufacturing with High-Tech Innovations (AIM-HI), National Chung Cheng University, Chiayi 62102, Taiwan. Electronic address:

Published: December 2024

This study employed machine learning techniques to predict the rate of feline infectious peritonitis (FIP) diagnoses, with a specific focus on mutations in the spike protein gene of the feline coronavirus (FCoV). FIP is a fatal viral disease affecting the peritoneum of cats and is primarily caused by mutations in FCoV. Its diagnosis largely relies on evaluations of various biomarkers and clinical symptoms. The current analysis of FCoV spike protein gene mutations exhibits certain limitations. To address this problem, the present study employed a large dataset-comprising information on FCoV copy numbers, spike protein mutation outcomes, and related clinical data-and used machine learning models to analyze the association between spike protein gene mutations and FIP diagnosis. Various algorithms were used to establish highly accurate predictive models, namely logistic regression, random forest, decision tree, neural network, support vector machine, gradient boosting tree, and categorical boosting (CatBoost) algorithms. The model obtained using the CatBoost algorithm was discovered to have accuracy of 0.9541. Accordingly, a highly accurate predictive model was developed to enable early diagnosis of FIP and improve the rate of survival in cats. The application of machine learning technology in this study yielded research findings that provide veterinarians with effective tools for managing and preventing FIP, a painful and deadly disease for cats. This study is a pioneering work in the systematic application of multiple machine learning models to the prediction of FIP and comparison of performance results to improve diagnostic accuracy and efficiency. This study is the first of its kind in the field of FIP.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2024.108227DOI Listing

Publication Analysis

Top Keywords

machine learning
16
spike protein
16
protein gene
12
feline infectious
8
infectious peritonitis
8
catboost algorithm
8
study employed
8
gene mutations
8
learning models
8
highly accurate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!