Recent advances in machine learning and deep learning have presented new opportunities for learning to localize the origin of ventricular activation from 12-lead electrocardiograms (ECGs), an important step in guiding ablation therapies for ventricular tachycardia. Passively learning from population data is faced with challenges due to significant variations among subjects, and building a patient-specific model raises the open question of where to select pace-mapping data for training. This work introduces BOATMAP, a novel active learning approach designed to provide clinicians with interpretable guidance that progressively assists in locating the origin of ventricular activation from 12-lead ECGs. BOATMAP inverts the input-output relationship in traditional machine learning solutions to this problem and learns the similarity between a target ECG and a paced ECG as a function of the pacing site coordinates. Using Gaussian processes (GP) as a surrogate model, BOATMAP iteratively refines the estimated similarity landscape while providing suggestions to clinicians regarding the next optimal pacing site. Furthermore, it can incorporate constraints to avoid suggesting pacing in non-viable regions such as the core of the myocardial scar. Tested in a realistic simulation environment in various heart geometries and tissue properties, BOATMAP demonstrated the ability to accurately localize the origin of activation, achieving an average localization accuracy of 3.9±3.6mm with only 8.0±4.0 pacing sites. BOATMAP offers real-time interpretable guidance for accurate localization and enhancing clinical decision-making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560634PMC
http://dx.doi.org/10.1016/j.compbiomed.2024.109201DOI Listing

Publication Analysis

Top Keywords

machine learning
8
localize origin
8
origin ventricular
8
ventricular activation
8
activation 12-lead
8
interpretable guidance
8
pacing site
8
boatmap
6
learning
6
boatmap bayesian
4

Similar Publications

Deep learning-based design and experimental validation of a medicine-like human antibody library.

Brief Bioinform

November 2024

Biotherapeutics Molecule Discovery, Boehringer Ingelheim Pharmaceutical Inc., 900 Ridgebury Road, Ridgefield, CT 06877, United States.

Antibody generation requires the use of one or more time-consuming methods, namely animal immunization, and in vitro display technologies. However, the recent availability of large amounts of antibody sequence and structural data in the public domain along with the advent of generative deep learning algorithms raises the possibility of computationally generating novel antibody sequences with desirable developability attributes. Here, we describe a deep learning model for computationally generating libraries of highly human antibody variable regions whose intrinsic physicochemical properties resemble those of the variable regions of the marketed antibody-based biotherapeutics (medicine-likeness).

View Article and Find Full Text PDF

Accurate survival prediction of patients with long-bone metastases is challenging, but important for optimizing treatment. The Skeletal Oncology Research Group (SORG) machine learning algorithm (MLA) has been previously developed and internally validated to predict 90-day and 1-year survival. External validation showed promise in the United States and Taiwan.

View Article and Find Full Text PDF

Background: Learning health systems (LHS) have the potential to use health data in real time through rapid and continuous cycles of data interrogation, implementing insights to practice, feedback, and practice change. However, there is a lack of an appropriately skilled interprofessional informatics workforce that can leverage knowledge to design innovative solutions. Therefore, there is a need to develop tailored professional development training in digital health, to foster skilled interprofessional learning communities in the health care workforce in Australia.

View Article and Find Full Text PDF

Detecting anomalies in smart wearables for hypertension: a deep learning mechanism.

Front Public Health

January 2025

Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan, Saudi Arabia.

Introduction: The growing demand for real-time, affordable, and accessible healthcare has underscored the need for advanced technologies that can provide timely health monitoring. One such area is predicting arterial blood pressure (BP) using non-invasive methods, which is crucial for managing cardiovascular diseases. This research aims to address the limitations of current healthcare systems, particularly in remote areas, by leveraging deep learning techniques in Smart Health Monitoring (SHM).

View Article and Find Full Text PDF

Background: Large language models (LLMs) have demonstrated impressive performance on medical licensing and diagnosis-related exams. However, comparative evaluations to optimize LLM performance and ability in the domain of comprehensive medication management (CMM) are lacking. The purpose of this evaluation was to test various LLMs performance optimization strategies and performance on critical care pharmacotherapy questions used in the assessment of Doctor of Pharmacy students.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!