Irisin, proteolytically cleaved from Fndc5 protein, has been identified as an exercise-related hormone. Here, we investigated the irisin levels in aqueous humor and its involvement in the pathogenesis of uveitis. The results revealed that the irisin level in the aqueous humor was significantly decreased in Vogt-Koyanagi-Harada (VKH), and Behcet uveitis (BU) patients, and was negatively correlated with TNF-α in BU patients. Exogenous supplementation of irisin alleviated scores of experimental autoimmune uveitis (EAU) clinically and pathologically and suppressed the proportion of Th1 and Th17 cells in spleen. Fndc5 EAU mice exhibited more severe inflammatory manifestations with increased microglial activation in the retina. Irisin could mitigate M1 microglia and promote M2 microglia polarization. RNA sequencing of the retina showed that HIF-1α pathway was significantly enriched in Fndc5 EAU mice. HIF-1α pathway inhibitor significantly rescued EAU severity, associated with a decreased M1 microglial polarization in the retina of Fndc5 mice. In conclusion, we highlighted that irisin could alleviate uveitis by inhibiting Th1 and Th17 cells and reducing M1 microglial polarization via HIF-1α pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10753-024-02149-5 | DOI Listing |
Biol Lett
July 2020
Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON Canada, K1N 6N5.
Blood
March 2018
Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
During development, hematopoietic stem cells (HSCs) derive from specialized endothelial cells (ECs) called hemogenic endothelium (HE) via a process called endothelial-to-hematopoietic transition (EHT). Hypoxia-inducible factor-1α (HIF-1α) has been reported to positively modulate EHT in vivo, but current data indicate the existence of other regulators of this process. Here we show that in zebrafish, Hif-2α also positively modulates HSC formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!