A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Combinatorial optimization of the hybrid cellulase complex structure designed from modular libraries. | LitMetric

Combinatorial optimization of the hybrid cellulase complex structure designed from modular libraries.

Sci Rep

Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-Ku, Sendai, 980-8579, Japan.

Published: September 2024

Cellulase selectively recognizes cellulose surfaces and cleaves their β-1,4-glycosidic bonds. Combining hydrolysis using cellulase and fermentation can produce alternative fuels and chemical products. However, anaerobic bacteria produce only low levels of highly active cellulase complexes so-called cellulosomes. Therefore, we designed hybrid cellulase complexes from 49 biotinylated catalytic domain (CD) and 30 biotinylated cellulose-binding domain (CBD) libraries on streptavidin-conjugated nanoparticles to enhance cellulose hydrolysis by mimicking the cellulosome structure. The hybrid cellulase complex, incorporating both native CD and CBD, significantly improved reducing sugar production from cellulose compared to free native modular enzymes. The optimal CBD for each hybrid cellulase complex differed from that of the native enzyme. The most effective hybrid cellulase complex was observed with the combination of CD from Thermobifida fusca YX and CBD from the Bacillus halodurans C-125. The hybrid cellulase complex/CD-CBD and -CD-CBD combinations showed increased reducing sugar production. Similar results were also observed in microcrystalline cellulose degradation. Furthermore, clustering on nanoparticles enhanced enzyme thermostability. Our results demonstrate that hybrid cellulase complex structures improve enzyme function through synergistic effects and extend the lifespan of the enzyme.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438973PMC
http://dx.doi.org/10.1038/s41598-024-73541-2DOI Listing

Publication Analysis

Top Keywords

hybrid cellulase
28
cellulase complex
20
cellulase
10
cellulase complexes
8
reducing sugar
8
sugar production
8
hybrid
7
complex
5
combinatorial optimization
4
optimization hybrid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!