A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ferromagnetic quantum critical point protected by nonsymmorphic symmetry in a Kondo metal. | LitMetric

Ferromagnetic quantum critical point protected by nonsymmorphic symmetry in a Kondo metal.

Nat Commun

Laboratory for Multiscale Materials Experiments (LMX), PSI Center for Neutron and Muon Sciences, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland.

Published: September 2024

Quantum critical points (QCPs), zero-temperature phase transitions, are windows to fundamental quantum-mechanical phenomena associated with universal behaviour. Magnetic QCPs have been extensively investigated in the vicinity of antiferromagnetic order. However, QCPs are rare in metallic ferromagnets due to the coupling of the order parameter to electronic soft modes. Recently, antisymmetric spin-orbit coupling in noncentrosymmetric systems was suggested to protect ferromagnetic QCPs. Nonetheless, multiple centrosymmetric materials host FM QCPs, suggesting a more general mechanism behind their protection. In this context, CeSi, a dense Kondo lattice crystallising in a centrosymmetric structure, exhibits ferromagnetic order when Si is replaced with Ag. We report that the Ag-substitution to CeSi linearly suppresses the ferromagnetic order towards a QCP, accompanied by concurrent strange-metal behaviour. Herein, we suggest that, despite the centrosymmetric structure, spin-orbit coupling arising from the local noncentrosymmetric structure, in combination with nonsymmorphic symmetry, can protect ferromagnetic QCPs. Our findings offer a general guideline for discovering new ferromagnetic QCPs and highlight one new family of materials within which the interplay of topology and quantum phase transitions can be investigated in the context of strongly correlated systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439045PMC
http://dx.doi.org/10.1038/s41467-024-52720-9DOI Listing

Publication Analysis

Top Keywords

ferromagnetic qcps
12
quantum critical
8
nonsymmorphic symmetry
8
phase transitions
8
spin-orbit coupling
8
protect ferromagnetic
8
centrosymmetric structure
8
ferromagnetic order
8
qcps
7
ferromagnetic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!