Background: Ambient temperature and humidity are established environmental stressors with regard to influenza infections; however, mapping disease burden is difficult owing to the complexities of the underlying associations and differences in vulnerable population distributions. In this study, we aimed to quantify the burden of influenza attributable to non-optimal ambient temperature and absolute humidity in Japan considering geographical differences in vulnerability.
Methods: The exposure-lag-response relationships between influenza incidence, ambient temperature, and absolute humidity in all 47 Japanese prefectures for 2000-2019 were quantified using a distributed lag non-linear model for each prefecture; the estimates from all the prefectures were then pooled using a multivariate mixed-effects meta-regression model to derive nationwide average associations. Association between prefecture-specific indicators and the risk were also examined. Attributable risks were estimated for non-optimal ambient temperature and absolute humidity according to the exposure-lag-response relationships obtained before.
Results: A total of 25,596,525 influenza cases were reported during the study period. Cold and dry conditions significantly increased influenza incidence risk. Compared with the minimum incidence weekly mean ambient temperature (29.8 °C) and the minimum incidence weekly mean absolute humidity (20.2 g/m), the cumulative relative risks (RRs) of influenza in cold (2.5 °C) and dry (3.6 g/m) conditions were 2.79 (95% confidence interval [CI]: 1.78-4.37) and 3.20 (95% CI: 2.37-4.31), respectively. The higher RRs for cold and dry conditions were associated with geographical and climatic indicators corresponding to the central and northern prefectures; demographic, socioeconomic, and health resources indicators showed no clear trends. Finally, 27.25% (95% empirical CI [eCI]: 5.54-36.35) and 32.35% (95% eCI: 22.39-37.87) of all cases were attributable to non-optimal ambient temperature and absolute humidity (6,976,300 [95% eCI: 1,420,068-9,306,128] and 8,280,981 [95% eCI: 8,280,981-9,693,532] cases), respectively.
Conclusions: These findings could help identify the most vulnerable populations in Japan and design adaptation policies to reduce the attributable burden of influenza due to climate variability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.120065 | DOI Listing |
J Plant Physiol
January 2025
Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain.
Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080.
The highest sheet symmetry form of graphyne, with one triple bond between each neighboring hexagon in graphene, irreversibly transforms exothermically at ambient pressure and low temperatures into a nongraphitic, planar-sheet, zero-bandgap phase consisting of intrasheet-bonded sp carbons. The synthesis of this sp carbon phase is demonstrated, and other carbon phases are described for possible future synthesis from graphyne without breaking graphyne bonds. While measurements and theory indicate that the reacting graphyne becomes nonplanar because of sheet wrinkling produced by dimensional mismatch between reacted and nonreacted sheet regions, sheet planarity is regained when the reaction is complete.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
ISGlobal, Barcelona, Spain.
Importance: Climate change can adversely affect mental health, but the association of ambient temperature with psychiatric symptoms remains poorly understood.
Objective: To assess the association of ambient temperature exposure with internalizing, externalizing, and attention problems in adolescents from 2 population-based birth cohorts in Europe.
Design, Setting, And Participants: This cohort study analyzed data from the Dutch Generation R Study and the Spanish INMA (Infancia y Medio Ambiente) Project.
Environ Sci Pollut Res Int
January 2025
Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
The atmospheric dicarboxylic acids (DCAs) have a significant impact on the climate and indirectly affect human health, making them important organic substances. PM bound DCAs were analysed for Jorhat, India, 2019. In addition to the temporal variability, seasonal variation throughout the year and the impact of varying meteorological factors on DCAs concentration have also been studied.
View Article and Find Full Text PDFWeld World
November 2024
Solid State Materials Processing, Institute of Material and Process Design, Helmholtz-Zentrum Hereon, Geesthacht, Germany.
Friction surfacing (FS) is a solid-state deposition process in which layers are deposited on a substrate surface by frictional heat and severe plastic deformation of a consumable stud material below its melting temperature. Bonding occurs due to accelerated diffusion. The deposition of several layers on top of each other is referred to as multi-layer FS (MLFS), a promising candidate for additive manufacturing (AM) as it offers advantages over fusion-based AM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!